Нервная система органы чувств насекомых. Органы чувств

  • 16.05.2019

Химическое чувство

Животные наделены общей химической чувствительностью, которую обеспечивают различные сенсорные органы. У химического чувства насекомых наиболее значительную роль играет обоняние. А термитам и муравьям, по мнению ученых, дано объемное обоняние. Что это такое – нам трудно себе представить. Органы обоняния насекомого реагируют на присутствие даже очень малых концентраций вещества, порой весьма удаленного от источника. Благодаря обонянию, насекомое находит добычу и пищу, ориентируется на местности, узнает о приближении врага, осуществляет биокоммуникацию, где специфическим «языком» служит обмен химической информацией с помощью феромонов.

Феромоны являются сложнейшими соединениями, выделяемыми для коммуникационных целей одними особями с целью передачи информации другим особям. Такая информация закодирована в конкретных химических веществах, зависящих от вида живого существа и даже от его принадлежности определенной семье. Восприятие с помощью системы обоняния и расшифровка «послания» вызывает у получателей определенную форму поведения или физиологический процесс. К настоящему времени известна значительная группа феромонов насекомых. Одни из них предназначены для привлечения особей противоположного пола, другие, следовые – указывают путь к дому или пищевому источнику, третьи – служат сигналом тревоги, четвертые – регулируют определенные физиологические процессы и т.д.

Поистине уникальным должно быть «химическое производство» в организме насекомых, чтобы выпускать в нужном количестве и в определенный момент всю гамму необходимых им феромонов. Сегодня известно более сотни этих веществ сложнейшего химического состава, но искусственно воспроизвести их удалось не более десятка. Ведь для их получения требуются совершенные технологии и оборудование, так что пока остается только удивляться такому обустройству организма этих миниатюрных беспозвоночных существ.

Жуки обеспечены главным образом усиками обонятельного типа. Они позволяют улавливать не только сам запах вещества и направление его распространения, но даже «ощутить» форму пахучего предмета. Примером великолепного обоняния могут служить жуки-могильщики, занимающиеся очисткой земли от падали. Они способны почувствовать запах за сотни метров от нее и собраться большой группой. А божья коровка с помощью обоняния находит колонии тлей, чтобы оставить там кладку. Ведь тлями питается не только она сама, но и ее личинки.

Не только взрослые насекомые, но и их личинки часто наделены отличным обонянием. Так, личинки майского жука способны двигаться к корням растений (сосны, пшеницы), ориентируясь по едва повышенной концентрации углекислого газа. В экспериментах личинки сразу же направляются к участку почвы, куда ввели небольшое количество вещества, образующее углекислый газ.

Непостижимой кажется чувствительность органа обоняния, например, бабочки сатурнии, самец которой способен улавливать запах самки своего вида на расстоянии 12 км. При сопоставлении этого расстояния с количеством выделяемого самкой феромона, получился удививший ученых результат. Благодаря своим усикам самец безошибочно отыскивает среди многих пахучих веществ одну-единственную молекулу наследственно известного ему вещества в 1 м3 воздуха!

Некоторым перепончатокрылым дано настолько острое обоняние, что оно не уступает известному чутью собаки. Так, самки наездников, когда бегают по стволу дерева или пню, усиленно шевелят усиками. Ими они «вынюхивают» личинок рогохвоста или жука-дровосека, находящихся в древесине на расстоянии 2–2,5 см от поверхности.

Благодаря уникальной чувствительности усиков крошечный наездник гелис одним только их прикосновением к коконам пауков определяет, что в них находится – недоразвитые ли яички, уже вышедшие из них малоподвижные паучки или яички других наездников своего вида. Каким образом гелис делает такой точный анализ, пока не известно. Вероятнее всего, он ощущает тончайший специфический запах, но может быть, при постукивании усиками наездник улавливает какой-либо отраженный звук.

Восприятие и анализ химических раздражителей, действующих на органы обоняния насекомых, осуществляет многофункциональная система – обонятельный анализатор. Он, как и все другие анализаторы состоит из воспринимающего, проводникового и центрального отделов. Обонятельные рецепторы (хеморецепторы) воспринимают молекулы пахучих веществ, и импульсы, сигнализирующие об определенном запахе, направляются по нервным волокнам к мозгу для анализа. Там происходит мгновенная выработка ответной реакции организма.

Говоря об обонянии насекомых, нельзя не сказать о запахе. В науке пока нет четкого понимания того, что такое запах, и относительно этого природного феномена существует множество теорий. Согласно одной из них анализируемые молекулы вещества представляют собой «ключ». А «замком» являются рецепторы органов обоняния, включенные в анализаторы запаха. Если конфигурация молекулы подойдет к «замку» определенного рецептора, то анализатор получит от него сигнал, расшифрует его и передаст информацию о запахе в мозг животного. Согласно другой теории запах определяется химическими свойствами молекул и распределением электрических зарядов. Наиболее новая теория, завоевавшая много сторонников, главную причину запаха видит в вибрационных свойствах молекул и их составляющих. Любой аромат связан с определенными частотами (волновыми числами) инфракрасного диапазона. Например, тиоспирт лукового супа и декаборан химически совершенно различны. Но они имеют одну и ту же частоту и одинаковый запах. В то же время существуют химически подобные вещества, которые характеризуются разными частотами и пахнут по-разному. Если эта теория верна, то и ароматные вещества и тысячи видов клеток, воспринимающих запах, можно оценивать по инфракрасным частотам.

«Радиолокационная установка» насекомых

Насекомые наделены прекрасными органами обоняния и осязания – антеннами (усиками или сяжками). Они очень подвижны и легко управляемы: насекомое может разводить их, сближать, вращать каждый в отдельности на своей оси или вместе на общей. В этом случае они и внешне напоминают и по своей сути являются «радиолокационной установкой». Нервно-чувствительным элементом антенн являются сенсиллы. От них импульс со скоростью 5м в секунду передается в «мозговой» центр анализатора для распознания объекта раздражения. И далее сигнал реагирования на полученную информацию мгновенно поступает к мышце или другому органу.

У большинства насекомых на втором членике усика находится джонстонов орган – универсальное устройство, назначение которого еще полностью не выяснено. Как считают, оно воспринимает движения и сотрясения воздуха и воды, контакты с твердыми объектами. Удивительно высокой чувствительностью к механическим колебаниям наделены саранча и кузнечик, которые способны зарегистрировать любые сотрясения с амплитудой, равной половине диаметра атома водорода!

У жуков на втором членике усика тоже имеется джонстонов орган. И если у жука-вертячки, бегающего по поверхности воды, его повредить или удалить, то он станет натыкаться на любые препятствия. При помощи этого органа жук способен улавливать отраженные волны, идущие от берега или препятствия. Он ощущает водяные волны высотой 0. 000 000 004 мм, то есть джонстонов орган выполняет задачу эхолота или радиолокатора.

Муравьи отличаются не только хорошо организованным мозгом, но и столь же совершенной телесной организацией. Важнейшее значение для этих насекомых имеют усики, некоторые служат прекрасным органом обоняния, осязания, познания окружающей среды, взаимных объяснений. Лишенные усиков муравьи теряют способность отыскивать дорогу, находящуюся поблизости пищу, отличать врагов от друзей. С помощью антенн насекомые способны «разговаривать» между собой. Муравьи передают важную информацию, прикасаясь антеннами к определенным членикам усиков друг друга. В одном из поведенческих эпизодов два муравья нашли добычу в виде личинок разных размеров. После «переговоров» с собратьями при помощи антенн, они направились к месту находки вместе с мобилизованными помощниками. При этом более удачливый муравей, сумевший с помощью усиков передать информацию о более крупной найденной им добыче, мобилизовал за собой гораздо большую группу рабочих муравьев.

Интересно, что муравьи – одни из самых чистоплотных созданий. После каждой еды и сна все их тело и особенно усики подвергаются тщательной очистке.

Вкусовые ощущения

Человек четко определяет запах и вкус вещества, а у насекомых вкусовое и обонятельное ощущения зачастую не разделяются. Они выступают как единое химическое чувство (восприятие).

Насекомые, обладающие вкусовыми ощущениями, оказывают предпочтение тем или иным веществам в зависимости от питания, характерного для данного вида. При этом они способны различать сладкое, соленое, горькое и кислое. Для соприкосновения с потребляемой пищей органы вкуса могут быть расположены на различных участках тела насекомых – на антеннах, хоботке и на ногах. С их помощью насекомые получают основную химическую информацию об окружающей среде. Например, муха, лишь прикоснувшись лапками к заинтересовавшему ее объекту, практически сразу узнает, что у нее под ногами – питье, пища или что-то несъедобное. То есть она ногами способна осуществлять мгновенный контактный анализ химического вещества.

Вкус – это ощущения, возникающее при воздействии раствора химических веществ на рецепторы (хеморецепторы) органа вкуса насекомого. Рецепторные вкусовые клетки являются периферической частью сложной системы вкусового анализатора. Они воспринимают химические раздражения, и здесь происходит первичное кодирование вкусовых сигналов. Анализаторы тотчас передают залпы хемоэлектрических импульсов по тонким нервным волокнам в свой «мозговой» центр. Каждый такой импульс длится менее тысячной доли секунды. А затем центральные структуры анализатора мгновенно определяют вкусовые ощущения.

Продолжаются попытки разобраться не только в вопросе, что такое запах, но и создать единую теорию «сладости». Пока это не удается – может быть это удастся вам, биологи ХХ1 века. Проблема в том, что создавать относительно одинаковые вкусовые ощущения сладости могут совершенно различные химические вещества – как органические, так и неорганические.

Органы осязания

Изучение осязания насекомых представляет собой едва ли не наибольшую сложность. Каким образом осязают мир эти закованные в хитиновый панцирь существа? Так, благодаря рецепторам кожи мы способны воспринимать различные осязательные ощущения – одни рецепторы регистрируют давление, другие температуру и т.п. Потрогав предмет, можно сделать вывод, что он холодный или теплый, твердый или мягкий, гладкий или шероховатый. У насекомых тоже существуют анализаторы, определяющие температуру, давление и т.п., но многое в механизмах их действия остается неизвестным.

Осязание является одним из наиболее важных органов чувств для безопасности полета многих летающих насекомых, чтобы ощущать воздушные потоки. Например, у двукрылых все тело покрыто сенсиллами, выполняющими осязательные функции. Особенно их много на жужжальцах, чтобы воспринимать давление воздуха и стабилизировать полет.

Благодаря осязанию муху не так легко прихлопнуть. Ее зрение позволяет заметить угрожающий объект только на расстоянии 40 – 70 см. Зато муха способна отреагировать на опасное движение руки, вызвавшее даже малое перемещение воздуха, и мгновенно взлететь. Эта обычная комнатная муха еще раз подтверждает, что в мире живого нет ничего простого – все существа от мала до велика обеспечены прекрасными сенсорными системами для активной жизнедеятельности и собственной защиты.

Рецепторы насекомых, регистрирующих давление, могут быть в виде пупырышек и щетинок. Они используются насекомыми для разных целей, в том числе для ориентации в пространстве – по направлению силы тяжести. Например, личинка мухи перед окукливанием всегда четко движется вверх, то есть против силы тяжести. Ведь ей нужно выползти из жидкой пищевой массы, а там нет никаких ориентиров, кроме притяжения Земли. Даже выбравшись из куколки, муха еще некоторое время стремится ползти вверх, пока не обсохнет, чтобы осуществить полет.

У многих насекомых хорошо развито чувство гравитации. Например, муравьи способны оценить наклон поверхности в 20. А жук-стафилин, который роет вертикальные норы, может определить отклонение от вертикали в 10.

Живые «синоптики»

Многие насекомые наделены прекрасной способностью предчувствовать погодные изменения и делать долгосрочные прогнозы. Впрочем, это характерно для всего живого – будь то растение, микроорганизм, беспозвоночное или позвоночное животное. Такие способности обеспечивают нормальную жизнедеятельность в предназначенной им среде обитания. Бывают и редко наблюдаемые природные явления – засухи, наводнения, резкие похолодания. И тогда, чтобы выжить, живым существам необходимо заранее мобилизовать дополнительные защитные средства. И в том и в другом случае они используют свои внутриорганизменные «метеорологические станции».

Постоянно и внимательно наблюдая за поведением различных живых существ, можно узнавать не только об изменениях погоды, но и даже о предстоящих природных катаклизмах. Ведь свыше 600 видов животных и 400 видов растений, пока известных ученым, могут выполнять своеобразную роль барометров, индикаторов влажности и температуры, предсказателей как гроз, бурь, смерчей, наводнений, так и прекрасной безоблачной погоды. Причем живые «синоптики» есть везде, где бы вы ни находились – у водоема, на лугу, в лесу. Например, перед дождем еще при ясном небе, перестают стрекотать зеленые кузнечики, муравьи начинают плотно закрывать входы в муравейник, а пчелы прекращают полеты за нектаром, сидят в улье и гудят. Стремясь спрятаться от надвигающейся непогоды, мухи и осы залетают в окна домов.

Наблюдения за ядовитыми муравьями, обитающими в предгорьях Тибета, выявили их прекрасные способности делать более дальние прогнозы. Перед началом периода сильных дождей муравьи переселяются на другое место с сухим твердым грунтом, а перед наступлением засухи муравьи заполняют темные влажные впадины. Крылатые муравьи способны за 2 –3 дня ощутить приближение бури. Крупные особи начинают метаться по земле, а мелкие роятся на небольшой высоте. И чем эти процессы активнее, тем сильнее ожидается непогода. Выявлено, что за год муравьи правильно определили 22 изменения погоды, а ошиблись только в двух случаях. Это составило 9%, что выглядит совсем неплохо по сравнению со средней ошибкой метеостанций в 20 %.

Целесообразные действия насекомых зачастую зависят от долгосрочных прогнозов, и это может оказывать людям большую услугу. Опытного пасечника достаточно надежным прогнозом обеспечивают пчелы. На зиму они заделывают леток в улье воском. По отверстию для проветривания улья можно судить о предстоящей зиме. Если пчелы оставят большое отверстие – зима будет теплой, а если маленькое – жди суровых морозов. Также известно, что если пчелы начинают рано вылетать из ульев, можно ожидать ранней теплой весны. Те же муравьи, если зима не ожидается суровой, остаются жить вблизи поверхности почвы, а перед холодной зимой располагаются глубже в земле и строят более высокий муравейник.

Кроме макроклимата для насекомых важен и микроклимат среды их обитания. Например, пчелы не допускают перегрева в ульях и, получив сигнал от своих живых «приборов» о превышении температуры, приступают к вентиляции помещения. Часть рабочих пчел организованно располагается на разной высоте по всему улью и быстрыми взмахами крыльев приводит в движение воздух. Образуется сильный воздушный поток, и улей охлаждается. Вентиляция – процесс длительный, и когда одна партия пчел утомляется, наступает очередь другой, причем в строгом порядке.

Поведение не только взрослых насекомых, но и их личинок зависит от показаний живых «приборов». К примеру, личинки цикад, развивающиеся в земле, выходят на поверхность только при хорошей погоде. Но как узнать, какая погода наверху? Для определения этого над своими подземными убежищами они создают специальные земляные конусы с крупными отверстиями – своего рода метеорологические сооружения. В них цикады через тонкий слой почвы оценивают температуру и влажность. И если погодные условия неблагоприятны, личинки возвращаются в норку.

Феномен прогнозирования ливней и наводнений

Наблюдения за поведением термитов и муравьев в критических ситуациях могут помочь людям в прогнозировании сильных ливней и наводнений. Один из естествоиспытателей описал случай, когда пред наводнением индейское племя, проживающее в джунглях Бразилии, в спешном порядке покинуло свое поселение. А о приближающейся беде индейцам «поведали» муравьи. Перед наводнением эти общественные насекомые приходят в сильное волнение и срочно покидают вместе с куколками и запасами продовольствия обжитое место. Они направляются в те места, куда вода не дойдет. Местное население вряд ли понимало истоки такой удивительной чувствительности муравьев, но, покоряясь их знаниям, люди уходили от беды вслед за маленькими синоптиками.

Прекрасно умеют прогнозировать наводнение и термиты. Перед его началом они всей колонией покидают свои дома и устремляются к ближайшим деревьям. Предвидя размах бедствия, они поднимаются именно на ту высоту, которая будет выше ожидаемого наводнения. Там они пережидают, пока пойдут на убыль мутные потоки воды, которые мчат с такой скоростью, что деревья порой валятся под их напором.

Огромное количество метеостанций ведет наблюдение за погодой. Они расположены на суше, в том числе в горах, на специально оборудованных научных судах, спутниках и космических станциях. Метеорологи оснащены современными приборами, аппаратами и компьютерной техникой. Фактически они делают не прогноз погоды, а расчет, вычисление погодных изменений. А насекомые в приведенных примерах действительного прогнозируют погоду, используя врожденные способности, и встроенные в их организм специальные живые «приборы». Причем муравьи-синоптики определяют не только время приближения наводнения, но и оценивают его размах. Ведь для нового прибежища они занимали только безопасные места. Ученые пока так и не сумели объяснить этот феномен. Еще большую загадку преподнесли термиты. Дело в том, что они никогда не располагались на тех деревьях, которые при наводнении оказывались снесенными бурными потоками. Подобным образом, по наблюдению этологов, вели себя и скворцы, которые весной не занимали опасные для поселения скворечники. В последствии те были действительно сорваны ураганным ветром. Но здесь речь идет об относительно крупном животном. Птица, возможно, по качанию скворечника или по другим признакам оценивает ненадежность его крепления. Но каким образом и с помощью каких устройств подобные прогнозы могут делать совсем маленькие, но очень «мудрые» животные? Человек пока не только не в силах создать что-либо подобное, но и не может ответить не может. Эти задачи – будущим биологам!


Страница 2 - 2 из 2
Начало | Пред. | 2 | След. | Конец | Все
© Все права защищены

Органы чувств являются посредниками между внешней средой и организмом. По аналогии с человеком различают органы осязания, слуха, обоняния, вкуса и зрения. Однако правильнее разделять их на механическое чувство, гидротермическое чувство и зрение.
Основу органов чувств составляют их нервно-чувствительные образования - сенсиллы. В зависимости от особенностей воздействия и восприятия раздражения сенсиллы устроены неодинаково: одни выступают над поверхностью кожи в виде волоска, щетинки, конуса или иного образования, другие располагаются в самой коже.
К органам механического чувства относятся осязательные рецепторы, воспринимающие сотрясение положения тела, его равновесие. Они разбросаны по всему телу в виде простых сенсилл с чувствительным волоском. Изменение положения волоска передается чувствительной клетке, где возникает возбуждение, поступающее в нервный центр.
Слух развит у всех насекомых. У прямокрылых, певчих цикад и некоторых клопов слуховые рецепторы представлены тимпанальными органами. Саранчовые имеют такие органы по бокам 1-го брюшного сегмента, кузнечики и сверчки - на голенях передних ног в виде пары затянутых барабанной перепонкой овалов или парой щелей со скрытыми перепонками. Насекомые воспринимают звуки от 8 (инфразвук) до более 40 тыс. колебаний в секунду (ультразвук).
Орган химического чувства служит для восприятия запаха и вкуса и представлен хеморецепторами, расположенными на усиках. Количество обонятельных сенсилл зависит от образа жизни вида, способов и характера добывания пищи. Рабочая пчела имеет около 6 тыс. пластинчатых сенсилл на каждом усике. У самцов сенсилл обычно больше, что связано с активным розыском самок.
Обоняние служит насекомым для разыскивания особей противоположного пола, распознавания особей своего вида, для отыскивания пищи, мест откладки яиц. Многие насекомые выделяют привлекательные вещества - половые аттрактанты, или эпагоны. Неоплодотворенные самки могут привлекать самцов на расстоянии 3-9 км, но оплодотворенная самка уже не интересна для самцов. Самцы способны улавливать половой аттрактант на большом расстоянии и при ничтожной его концентрации, исчисляемой немногими молекулами на кубометр воздуха.
Вкус служит лишь для распознавания пищи. Насекомые различают четыре основных вкуса: сладкий, горький, кислый и соленый. Большинство сахаров распознается насекомыми даже в небольших концентрациях. Некоторые бабочки отличают от чистой воды раствор сахара с концентрацией 0,0027 %. Муравьи хорошо отличают сахар от сахарина, пчелы - соль и примесь ее к сахару в концентрации 0,36 %. Человек этой концентрации не ощущает.
Вкусовые рецепторы расположены на ротовых частях, но могут находиться и на лапках ног (дневные бабочки), при прикосновении подошвенной стороной лапки к раствору сахара голодная бабочка реагирует развертыванием хоботка. Высокую развитость химического чувства у насекомых используют при борьбе с ними методами приманок или отпугивающих веществ.
Гидротермическое чувство имеет большое значение в жизни насекомых и в зависимости от влажности и температуры среды регулирует их поведение.
Зрение вместе с химическим чувством играет ведущую роль в жизни насекомых. Органы зрения представлены простыми и сложными глазами. Сложные, или фасеточные, глаза расположены по бокам головы и иногда могут быть очень большими (мухи, стрекозы). Каждый фасеточный глаз состоит из многих сенсилл, которые называются омматидии , число их достигает многих сотен и даже тысяч. С помощью сложных глаз насекомые различают форму, движение, окраску и расстояние до предмета, а также поляризованный свет. Многие виды близоруки и на расстоянии различают только движение. Большинство насекомых не различают красный свет, но видят ультрафиолетовое излучение. Диапазон видимых световых волн лежит в пределах 2 500-8 000 нм. Медоносная пчела различает поляризованный свет, излучаемый голубым небом, что позволяет ей ориентироваться в направлении полета.
Полет насекомых на свет объясняется светокомпасным движением. Световые лучи расходятся радиально и при косом движении по отношению к ним угол падения будет меняться. Для сохранения фиксированного угла насекомое вынуждено все время менять свой путь в сторону источника света. Движение идет по логарифмической спирали и в конце концов приводит насекомое к источнику света.
Простые глаза, или глазки, находятся между сложными глазами на лбу или темени. Их количество колеблется от 1 до 3, они расположены треугольником. У многих насекомых глазки оказывают регулирующее воздействие на сложные глаза, обеспечивая устойчивость зрения в условиях колебания интенсивности освещения (у насекомых с неполным превращением).


У насекомых в той или иной мере развиты осязание, обоняние, вкус, слух и зрение. Кроме того, отдельные виды могут различать колебания температуры и влажности воздуха, изменение давления воздуха и водной среды, магнитное поле Земли и воздействие электростатического поля.

1. Органы осязания представлены в виде чувствительных волосков, расположенных на различных участках тела, особенно на усиках и ротовых конечностях. Раздражение волоска передается осязательной нервной клетке, где возникает возбуждение, передаваемое по ее отросткам в нервный центр.

2. Органы обоняния сосредоточены главным образом на усиках в виде пластинок или конусов, погруженных в углубления кутикулы и соединенных с нервными клетками. У самцов обонятельных элементов - сенсилл - обычно больше, чем у самок. Особенно много их у рабочих пчел - до 6000 пластинок на каждом усике, в связи с важным значением обоняния для поиска ими нектара. Чувствительность насекомых к некоторым запахам много выше, чем у человека. Например, пчелы обнаруживают запах гераниола и других эфирных масел при концентрации в 40... 100 раз меньшей, чем человек, а меченые самцы некоторых бабочек различают запах полового аттрактанта самки за 11 км.

3. Органы вкуса по строению иногда почти неотличимы от органов обоняния. Они расположены на ротовых частях. У бабочек, пчел и мух вкусовые сенсиллы обнаружены также на лапках передних ног. Голодная бабочка развертывает хоботок при прикосновении нижней стороны лапок к раствору сахара. При этом бабочки ощущают концентрацию сахара в воде в 2000 раз меньшую, чем человек. Насекомые в той или иной мере могут различать сладкое, соленое, горькое и кислое.

4. Органы слуха хорошо развиты лишь у тех насекомых, которые могут издавать звук (саранчовые, кузнечики, сверчки, певчие цикады, некоторые клопы). Они представлены в виде тимпанальных органов, т. е. утонченных подобно барабанной перепонке участков кутикулы со скоплением чувствительных элементов. Парные тимпанальные органы у саранчовых и цикад расположены на I сегменте брюшка, у кузнечиков и сверчков - на голенях передних ног. Однако различать звуки могут и многие другие насекомые, не имеющие тимпанальных органов.

Органы зрения обычно развиты хорошо. Лишь у насекомых, обитающих под землей или в пещерах, глаза отсутствуют или недоразвиты. Зрение представлено сложными и простыми глазами. Сложные, или фасеточные, глаза (1 пара) расположены по бокам головы. Они состоят из множества зрительных элементов - омматидиев, или фасеток, число которых у комнатной мухи достигает 4000, а у стрекоз - даже до 28000 в каждом глазу. Омматидий состоит из прозрачного хрусталика, или роговицы, в виде двояковыпуклой линзы и лежащего под ней прозрачного хрустального конуса. Вместе они составляют единую оптическую систему. Под конусом расположена сетчатка, воспринимающая световые лучи. Клетки сетчатки соединены нервными волосками с зрительными долями головного мозга. Каждый омматидий окружают пигментные клетки.

Насекомые могут различать цвета. Тли, например, отличают красный, желтый и зеленый от синего и фиолетового; шведскую муху привлекают голубые оттенки на зеленом фоне; у пчел цветовое зрение сдвинуто в сторону коротковолновой части спектра, и они плохо различают оранжево-красный его участок, но это компенсируется различением недоступного для глаза человека ультрафиолетового участка.

Простые глаза, или глазки, располагаются на голове насекомого треугольником: 1 срединный - на лбу, 2 других - симметрично по сторонам и выше на темени. Развиты они не у всех насекомых. Часто срединный глазок исчезает, реже отсутствуют парные глазки при сохранении среднего. Многие чешуекрылые и двукрылые совсем лишены глазков.

Благодаря высокоразвитым нервной системе и органам чувств насекомые воспринимают разнообразные сигналы, поступающие из внешней среды, и реагируют на них совокупностью целесообразных движений, включая и наследственно закрепленные действия. Такая совокупная реакция организма называется поведением. Поведение определяется не только внешними раздражителями, но и физиологическим состоянием организма (голод, половая зрелость и пр.). В основе поведения лежит рефлекс, т. е. ответная реакция на раздражение. Различают безусловные рефлексы, на которых основаны более простые акты поведения, и условные рефлексы, представляющие собой элементы высшей нервной деятельности.

Безусловные рефлексы являются врожденными, наследуемыми от своих родителей. Примером наиболее простой формы поведения является состояние танатоза, когда при внезапном толчке, сотрясении субстрата наблюдается рефлекторное торможение движений, и насекомое падает с ветки на землю, некоторое время оставаясь неподвижным.

Более сложными формами поведения являются таксисы и инстинкты. Таксисы представляют собой разнообразные рефлекторные движения под влиянием раздражителя: термотаксис - тепла, фототаксис - света, гигротаксис - влаги, хемотаксис - химического раздражителя и т. д. Знак таксиса может быть при этом положительный или отрицательный в зависимости от того, куда направлено движение насекомого - к раздражителю или в противоположную сторону.

Инстинкты являются сложными врожденными рефлексами. Они имеют очень важное значение в жизни насекомых, в выживании отдельных особей и популяции вида в целом. Инстинкты с первого взгляда производят впечатление разумных, сознательных действий. Например, самка жука кравчика в нижней части вертикального хода в почве делает боковые овальные камеры, которые заполняют комками растительной массы, сделанными из срезанных на полях листьев различных растений. На комок она откладывает одно яйцо, а выход из камеры засыпает почвой. На такой своеобразной силосной массе развивается личинка кравчика, здесь же окукливаясь.

Таким образом, инстинкты, даже самые сложные, представляют собой цепь безусловных рефлексов. В этой цепи каждый предыдущий рефлекс обусловливает последующий. Инстинкты не зависят от выучки отдельной особи, но вырабатываются в процессе эволюции вида, наследственно передаваясь из поколения в поколение.

Как впервые отмечено акад. И. П. Павловым, условные рефлексы являются элементами высшей нервной деятельности животного. В отличие от безусловных рефлексов они формируются в течение жизни особи и носят временный характер. Условный рефлекс вырабатывается под влиянием сочетаний как минимум двух раздражителей - безусловного (например, пища) и условного (запах, цвет, звук и т. д.). В результате совместного действия двух - раздражителей между различными центрами нервной системы возникает временная связь, и организм будет в течение определенного времени реагировать лишь на один условный раздражитель. Однако если подкрепление безусловным раздражителем будет не слишком долгим, временная связь в центральной нервной системе нарушается, и условный рефлекс угасает.

Органы размножения. Почти все насекомые являются раздельнополыми животными, и популяции состоят из самцов и самок. Лишь у немногих насекомых отмечен гермафродитизм (мухи термитоксении, обитающие в гнездах термитов, некоторые кокциды). Внешние различия между самцом и самкой часто незначительны или отсутствуют, и в этом случае особи различаются лишь по генитальным придаткам. Наряду с этим у насекомых нередко встречается и достаточно резко выраженный половой диморфизм.

При наличии полового диморфизма самцы отличаются более сильным развитием усиков (майский жук, хрущи, бабочки из сем. волнянок и шелкопрядов), глаз (пчелиные и складчатокрылые осы), ротовых частей (жук-олень), церок (уховертки), придатков кожи (жук-носорог), а также более яркой окраской тела и большей подвижностью. Наиболее резко половой диморфизм выражен у представителей отряда веерокрылых (самец крылатый, самка бескрылая червеобразной формы), большинства видов кокцид, некоторых бабочек (зимняя пяденица, непарный шелкопряд и др.).

Органы размножения самки состоят из парных яичников, парных яйцеводов, непарного яйцевода, парных придаточных желёз и иногда - семяприемника. Яичники состоят из яйцевых трубок, в которых формируются яйца. Количество яйцевых трубок у различных видов насекомых сильно варьирует: от 4...8 пар у некоторых жуков и бабочек до 220 пар у медоносной пчелы, максимальное количество отмечено у самок термитов - 12 000 пар и более. Яйцевые трубки обычно объединены в несколько протоков, впадающих в один из парных яйцеводов.

Парные яйцеводы переходят в непарный яйцевод, который открывается наружу половым отверстием. В непарный семяпровод нередко впадает сравнительно узкий проток семяприемника (у некоторых мух имеется 2...3 семяприемника). Семяприемник, или сперматека, служит для хранения сперматозоидов самца, которые попадают в него при спаривании. Хранение сперматозоидов длится иногда до 4...5 лет, например у медоносных пчел. Оплодотворение яйца происходит при прохождении его через непарный яйцевод во время откладки яиц. В это время сперматозоиды выходят из семяприемника и оплодотворяют яйцо. Часто у самок непарный яйцевод на заднем конце расширяется, образуя мешковидный орган - влагалище. В непарный яйцевод открывается и проток придаточных желёз.

Органы размножения самца состоят из парных семенников, парных семяпроводов, непарного семяизвергателыюго канала, придаточных половых желёз и копулятивного органа. Семенники имеют разнообразную форму (гроздевидные, дольчатые, дисковидные, извитые и пр.) и состоят из семенных трубок, или фолликулов, в которых происходит образование сперматозоидов. Семенные трубки впадают в парные семяпроводы, концы которых нередко расширяются, образуя семенные пузырьки. В них накапливается сперма перед выходом наружу, при спаривании она попадает в семяизвергательный канал, который выталкивает сперму через копулятивный орган наружу.

Придаточные половые железы самцов, обычно от 1 до 3 пар (у таракана они, однако, представлены в виде крупного грибовидного пучка из десятков трубок), впадают в семяизвергательный канал. Секрет придаточных желёз защищает сперму от внешних воздействий при спаривании, например у пчелиных. У некоторых насекомых секрет придаточных желёз обволакивает порцию спермы, образуя своеобразную капсулу, называемую сперматофором. При спаривании самец либо вводит сперматофор в половое отверстие самки, либо прикрепляет сперматофор к нему; сперматозоиды затем переходят из сперматофора в половые пути самки. Сперматофорное оплодотворение отмечено у прямокрылых, богомолов, некоторых жуков.



Насекомые , как и другие многоклеточные организмы , имеют множество различных рецепторов, или сенсилл, чувствительных к определённым раздражителям. Рецепторы насекомых очень разнообразны. У насекомых есть механорецепторы (слуховые рецепторы, проприоцепторы), фоторецепторы, терморецепторы, хеморецепторы. С их помощью насекомые улавливают энергию излучений в виде тепла и света, механические вибрации, включая широкий диапазон звуков, механическое давление, силу тяжести, концентрацию в воздухе водяных паров и летучих веществ, а также множество других факторов. Насекомые обладают развитым чувством обоняния и вкуса. Механорецепторами являются трихоидные сенсиллы, которые воспринимают тактильные стимулы. Некоторые сенсиллы могут улавливать малейшие колебания воздуха вокруг насекомого, а другие - сигнализируют о положении частей тела относительно друг друга. Воздушные рецепторы воспринимают скорость и направление потоков воздуха поблизости от насекомого и регулируют скорость полёта.

Зрение

Зрение играет большую роль в жизни большинства насекомых. У них встречаются три типа органов зрения - фасеточные глаза, латеральные (стеммы) и дорсальные (оцеллии) глазки. У дневных и летающих форм обычно имеется 2 сложных глаза и 3 оцеллия. Стеммы имеются у личинок насекомых с полным превращением. Они располагаются по бокам головы в количестве 1-30 с каждой стороны. Дорсальные глазки (оцеллии) встречаются вместе с фасеточными глазами и функционируют в качестве дополнительных органов зрения. Оцеллии отмечены у имаго большинства насекомых (отсутствуют у многих бабочек и двукрылых, у рабочих муравьёв и слепых форм) и у некоторых личинок (веснянки, подёнки, стрекозы). Как правило, они имеются только у хорошо летающих насекомых. Обычно имеется 3 дорсальных глазка, расположенных в виде треугольника в лобно-теменной области головы. Их основная функция, вероятно, заключается в оценке освещённости и её изменений. Предполагается, что они также принимают участие в зрительной ориентации насекомых и реакциях фототаксиса.

Особенности зрения насекомых обусловлены фасеточным строением глаз, которые состоят из большого числа омматидиев. Наибольшее число омматидиев обнаружено у бабочек (12-17 тысяч) и стрекоз (10-28 тысяч). Светочувствительной единицей омматидия является ретинальная (зрительная) клетка. В основе фоторецепции насекомых лежит преобразование зрительного пигмента родопсина под воздействием кванта света в изомер метародопсин. Обратное его восстановление даёт возможность многократного повторения элементарных зрительных актов. Обычно в фоторецепторах обнаруживаются 2-3 зрительных пигмента, различающихся по своей спектральной чувствительности. Набор данных зрительных пигментов определяет также особенности цветового зрения насекомых. Зрительные образы в фасеточных глазах формируются из множества точечных изображений, создаваемых отдельными омматидиями. Фасеточные глаза лишены способности к аккомодации и не могут приспосабливаться к зрению на разных расстояниях. Поэтому насекомых можно назвать «крайне близорукими». Насекомые характеризуются обратно пропорциональной связью между расстоянием до рассматриваемого объекта и числом различимых их глазом деталей: чем ближе находится объект, тем больше деталей они видят. Насекомые способны оценивать форму предметов, но на небольших расстояниях от них для этого требуется, чтобы очертания объектов вмещались в поле зрения фасеточного глаза.

Цветовое зрение насекомых может быть дихроматическим (муравьи, жуки-бронзовки) или трихроматическим (пчелиные и некоторые бабочки). Как минимум один вид бабочек обладает тетрахроматическим зрением. Существуют насекомые, которые способны различать цвета только одной (верхней или нижней) половинкой фасеточного глаза (четырёхпятнистая стрекоза). Для некоторых насекомых видимая часть спектра сдвинута в коротковолновую сторону. Например, пчёлы и муравьи не видят красного цвета (650-700 нм), но различают часть ультрафиолетового спектра (300-400 нм). Пчёлы и другие насекомые-опылители могут увидеть на цветках ультрафиолетовые рисунки, скрытые от зрения человека. Аналогично бабочки способны различать элементы окраски крыльев, видимые только в ультрафиолетовом излучении.

Восприятие звуков, передающихся через твёрдый субстрат, осуществляется у насекомых виброрецепторами, находящимися в голенях ног вблизи их сочленения с бедром. Многие насекомые обладают высокой чувствительностью к сотрясениям субстрата, на котором они находятся. Восприятие звуков через воздух или воду осуществляется фонорецепторами. Двукрылые воспринимают звуки при помощи джонстоновых органов. Наиболее сложными слуховыми органами насекомых являются тимпанальные органы. Количество сенсилл, входящих в состав одного тимпанального органа, варьирует от 3 (некоторые бабочки) до 70 (саранчовые) и даже до 1500 (у певчих цикад). У кузнечиков, сверчков и медведок тимпанальные органы находятся в голенях передних ног, у саранчовых - по бокам первого брюшного сегмента. Слуховые органы певчих цикад располагаются у основания брюшка в близости от звукопроизводящего аппарата. Слуховые органы ночных бабочек находятся в последнем грудном сегменте или в одном из двух передних сегментов брюшка и могут воспринимать ультразвуки, издаваемые летучими мышами. Медоносные пчёлы издают звуки, заставляя вибрировать часть торакса путём частых мышечных сокращений. Звук усиливается крыловыми пластинами. В отличие от многих насекомых пчёлы способны издавать звуки разной высоты и тембров, что позволяет им передавать информацию посредством разных характеристик звука.

Зрение

Насекомые обладают развитым обонятельным аппаратом. Восприятие запахов осуществляется благодаря хеморецепторам - обонятельным сенсиллам, расположенным на усиках, а иногда и на околоротовых придатках. На уровне хеморецепторов происходит первичное разделение обонятельных раздражителей благодаря наличию двух типов рецепторных нейронов. Нейроны-генералисты распознают очень широкий набор химических соединений, но при этом обладают низкой чувствительностью к запахам. Нейроны-специалисты реагируют только на одно или несколько родственных химических соединений. Они обеспечивают восприятие пахучих веществ, запускающих определённые поведенческие реакции (половые феромоны, пищевые аттрактанты и репелленты, углекислый газ). У самцов тутового шелкопряда обонятельные сенсиллы достигают теоретически возможного предела чувствительности: для возбуждения нейрона-специалиста достаточно всего лишь одной молекулы феромона самки. В своих опытах Ж. А. Фабр определил, что самцы грушевой павлиноглазки могут обнаруживать самок по феромонам на расстоянии до 10 км.

Контактные хеморецепторы образуют периферический отдел вкусового анализатора насекомых и позволяют им оценивают пригодность субстрата для питания или яйцекладки. Эти рецепторы располагаются на ротовых частях, кончиках лапок, антеннах и яйцекладе. Большинство насекомых способны распознавать растворы солей, глюкозы, сахарозы и других углеводов, а также воду. Хеморецепторы насекомых редко реагируют на искусственные вещества, имитирующие сладкий или горький вкус, в отличие от хеморецепторов позвоночных. Например, сахарин не воспринимается насекомыми как сладкое вещество.

Страница 5 из 5

Тип нервной системы у насекомых

Нервная система насекомых обрабатывает сигналы, поступающие из окружающей среды, в электрические импульсы. Благодаря этому осуществляются движения мускулов и функционирование органов. Особенно большое количество нервных клеток расположено в голове. Они образуют мозг, а также второй нервный центр, расположенный под пищеводом, - подглоточный ганглий. В трех грудных сегментах находятся нервные узлы, контролирующие движения лапок и крыльев. Расположенные в задней части туловища восемь нервных узлов иннервируют свой участок туловища. Нервные узлы соединены между собой и с другими нервными центрами нервными стволами. Таким образом, нервная система насекомых построена по принципу веревочной лестницы. У многих насекомых нервные узлы грудных сегментов и задней части туловища сливаются в более крупные узлы.

Как насекомые дышат

По сложной системе трубок воздух распространяется по телу насекомого. По бокам грудных и брюшных сегментов расположено по одному дыхательному отверстию, От него отходят трахеи, дыхательные пути, которые интенсивно разветвляются. Тончайшие трубочки, в тысячи раз тоньше человеческого волоса, опутывают поверхности всех органов насекомых. Крупные насекомые, такие как жуки и бабочки, часто дышат путем напряжения и расслабления задней части тела. Для того чтобы из дыхательных путей не уходила влага, насекомое закрывает дыхательные отверстия с помощью волосков; так исключается и возможность попадания в них инородных тел. Трахеи изнутри покрыты кутикулой, которая обновляется при каждой смене оболочки.


Есть ли у насекомых уши?

"Барабанная" кожа присутствует в организме многих насекомых. Это "ухо" восприимчиво зачастую не только к тем звукам, которые слышат люди, но и к ультразвуку. Однако расположено оно не на голове насекомого, а на самых различных частях его тела: у цикад и некоторых ночных бабочек-на задней части туловища, у других бабочек - в последнем грудном сегменте. У кузнечиков "уши" находятся под коленями на передних лапках. Многие насекомые пользуются ушами, для общения: женские особи кузнечиков и сверчков находят поющих самцов. Но у насекомых есть и другие органы чувств, которые воспринимают шумы. Самцы комаров улавливают с помощью органа, расположенного в усиках, звуки, которые издают самки их вида при полете, и таким образом находят партнершу. У тараканов на задней части туловища находятся длинные чувствительные волоски, способные воспринимать звук.


Зачем насекомым усики?

Органы чувств на усиках насекомых сообщают им не только состоянии окружающей среды, они помогают общаться с сородичами, найти подходящее место обитания для себя и потомства, а также пищу. Самки многих насекомых привлекают самцов с помощью запахов. Самцы малого ночного павлиньего глаза могут учуять самку на расстоянии нескольких километров. Муравьи распознают по запаху самок из своего муравейника. Некоторые виды муравьев метят путь от гнезда к источнику питания благодаря пахучим веществам, которые выделяются из специальных желез. С помощью усиков муравьи и термиты чуют запах, оставленный их сородичами. Если оба усика улавливают запах в одинаковой степени, значит, насекомое на правильном пути. Вещества-аттрактанты, которые выделяют готовые к спариванию самки бабочек, обычно разносятся ветром.