Что остается на месте вспышки сверхновой. Остатки от вспышек сверхновых звезд

  • 29.06.2020

Первым о вспышках сверхновых в нашей Галактике заговорил в 1921 г. К. Лундмарк. Он считал, яркие вспышки, наблюдавшиеся в древние и средние века, были галактическими новыми и теми звездами, которые позже получили название сверхновых. Отмечая вспышку 1054 г., наблюдавшуюся в Китае, он указал, что место ее близко к крабовидной туманности - газовому сгустку волокнистого строения, напоминающему краба. Любопытно, что эту туманность тоже в 1921 г. изучали американские астрономы К. Лампланд и Дж. Дункан и обнаружили оба, что она систематически расширяется, а длительность разлета ее составляет почти девять веков.

Нам сейчас легко сопоставить эти факты и установить совпадение вспышки с образованием туманности, однако ни Лундмарк, ни американские исследователи такого вывода не сделали. Лишь через семь лет Э. Хаббл впервые мимоходом отметил это совпадение, а еще через десять лет Лундмарк уже уверенно говорил, что Крабовидная туманность образовалась в результате вспышки 1054 г. Он нашел видимую звездную величину вспышки и расстояние до "Краба" и получил ее абсолютную звездную величину, которая оказалась намного выше, чем у обычной новой. Этим было доказано, что в 1054 г. в Галактике произошла вспышка сверхновой. Не менее важно было и установление того факта, что на ее месте осталась расширяющаяся туманность. Причиной же семнадцатилетней задержки, по-видимому, было то, что в наиболее авторитетной древнекитайской хронике говорилось, что "юго-восточнее "Тянь-Гуаня" в нескольких дюймах появилась звезда-гостья (так в Китае называли появления звезд и комет)". "Дюйм" в данном случае - это примерно полтора градуса дуги небесной сферы. Обычно считалось, что главной звездой созвездия "Тянь-Гуань" ("Небесный Барьер") являлась $\zeta$ Тельца (рис. 23). Однако Крабовидная туманность расположена не к юго-востоку, а к северо-западу от этой звезды. Приходилось подозревать, что в китайском тексте ошибка.

Рис. 23. Созвездие Тельца и его окрестности.
На левом краю карты нанесены градусные деления, жирная линия с градусными делениями - эклиптика. Границы созвездия Тельца и других современных созвездий оконтурены пунктиром, главные звезды обозначены буквами греческого алфавита. Конфигурации китайских созвездий изображены сплошными линиями, их названия даны курсивом. Крабовидная туманность отмечена знаком X.

Но возможность ошибки решительно отвергается специалистами по истории науки в древнем Китае. В 1971 г. специалист по древнекитайской астрономии Хо Пин-ю (Малайзия) и американские синологи Ф. Паар и П. Парсонс указали еще один текст с аналогичным описанием вспышки юго-восточнее "Тянь-Гуаня". Следовательно, ошибки в хронике не было. Нужно искать другую причину путаницы в установлении места вспышки. Это, по-видимому, удалось автору этой книги.

На старинных китайских картах звездного неба почти нет созвездий с одинаковыми названиями, и только "Тянь-Гуаней" оказалось пять: в современных созвездиях Тельца, Девы, Стрельца, Близнецов и Козерога. Еще один из первых исследователей китайской системы созвездий Г. Шлегель в 1875 г. отметил, что каждый из этих "Небесных Барьеров" состоит из двух ярких звезд, но главное - то, что линия между этими звездами барьера обязательно пересекает эклиптику,- оставалось незамеченным. А ведь в этом и заключалось назначение этих специальных созвездий: они играли роль настоящих шлагбаумов, перекрывавших в пяти местах главное "небесное шоссе" - эклиптику, в области которой происходит движение небесных светил: планет, Солнца и Луны.

Шлегель и за ним другие считали второй звездой "Тянь-Гуаня" в Тельце слабую звезду южнее Тельца и не учитывали, что такой барьер не пересекает эклиптику. Это и была ошибка, повлекшая путаницу в установлении места вспышки сверхновой.

Естественной парой звезд, удовлетворяющей нашему требованию, являются и Тельца. Кстати, Гиппарх их называет "рогами" Тельца, который встречает ими светила, движущиеся по эклиптике - роль, вполне аналогичная "Небесному Барьеру"! Почему же до сих пор не обращали внимания на Тельца как на естественный и, более того, главный яркий компонент "Тянь-Гуаня"? Потому, что не была выявлена связь барьеров с эклиптикой, а кроме того, эта звезда входила в число главных звезд соседнего созвездия "У-Че" ("Пять Колесниц"), расположенного на месте нашего созвездия Возничего. Но и это было несущественным возражением, потому что "Тянь-Гуани" не совсем самостоятельные созвездия: в Стрельце и Близнецах они одновременно входят в состав соседних созвездий. То же самое и с "Барьером" в Тельце.

У китайцев было строго принято указывать положение "звезды-гостьи" по отношению к самой яркой звезде созвездия. В "Тянь-Гуане" в Тельце такой звездой мы теперь должны считать Тельца, и тогда спорный текст из китайской хроники получает ясное толкование: "юго-восточнее Тельца на расстоянии нескольких градусов". Юго-восточнее этой звезды, в семи градусах от нее, расположена Крабовидная туманность.

О Крабовидной туманности мы будем еще немало говорить в последующих главах, потому что она сыграла исключительную роль в астрофизических исследованиях. Поэтому особый интерес представляют подробные сведения о вспышке: ее блеске, цвете, их изменениях и других особенностях. Однако прямых сравнений блеска вспыхнувшей звезды с чем-либо почти не имеется. Все же попытку исследовать проблему сделали в 1942 г. голландский астроном Я. Оорт и американец Н. Мэйолл. Они установили по китайским текстам, что первый раз сверхновую заметили 4 июля, и она была видна даже засветло в течение 23 дней, а в ночное время наблюдалась до середины апреля 1056 г.

Если учесть, что мы можем видеть Венеру при незашедшем Солнце, когда ее блеск превышает звездную величину - 3.5, а сверхновая перестала быть видна ночью, после того как ее блеск упал до 5-й величины, то получим, что звезда ослабела на 8.5 звездных величин в течение 650 суток, в среднем на 1.3 величины за сто суток. Но теперь мы знаем, что такой медленный темп ослабления в сочетании с невысокой скоростью разлета оболочки (которая наблюдается у Крабовидной туманности) возможен только у сверхновых II типа.

Оорт и Мэйолл отвергли несколько упоминаний о более ранних датах наблюдений сверхновой, в частности японские записи, датируемые концом мая, поскольку тогда сверхновую заслоняло Солнце и видеть ее было невозможно, а также три китайских текста, утверждавших, что в 1054 г. "было затмение Солнца в дневное время и появилась "звезда-гостья" в "лунном доме Мао" (Плеядах)". Места и моменты всех затмений точно вычислены в "Каноне затмений" Т. Оппольцера, и затмение, о котором говорится, состоялось в майское новолуние в Южном Китае после полудня 9 мая 1054 г. Сейчас, спустя 40 лет после, работы Оорта и Мэйолла, мы можем утверждать, что и японские, и китайские тексты не содержали ошибок: сверхновую видели в мае. Заблуждались современные интерпретаторы. Но это стало ясно после того, как были разысканы сведения о наблюдениях сверхновой в Армении.

В 1969 г. советские исследователи И.С. Астапович и Б.Е. Туманян нашли в хранилище древнеармянских рукописей Матенадаране, а в 1975 г. окончательно расшифровали астрономический текст Этума Патмича. В переводе он гласил, что в 1054 г. "на диске Луны появилась звезда, когда было новолуние 14 мая в первой половине ночи". Мы уже знаем, что по современному календарю новолуние было 9 мая, а спустя сутки с небольшим, как показывают расчеты. Луна максимально приблизилась к сверхновой. Этот момент мог наблюдаться в Ереване 10 мая при заходе Луны, которая спустя сутки после новолуния имела вид чрезвычайно узкого серпа. Но сверхновая находилась почти на четыре лунных диаметра ниже Луны. Н.С. Астапович убедительно показал, что это расстояние у горизонта могут существенно уменьшить три оптических эффекта: горизонтальный параллакс Луны, иррадиация и аномальное преломление света звезды у горизонта. Следовательно, могло наблюдаться поразительное зрелище яркой звезды в соседстве с лунным серпом.

Если Патмич видел сверхновую, то тексты, отмечавшие ее появление во время затмения, верны. Дело в том, что указание на "лунный дом Мао", по-видимому, относится только к Солнцу, которое в момент затмения действительно находилось в Плеядах. Возможно, в тексте отмечалось, что на потемневшем при затмении небе среди знакомых звезд увидели еще и "звезду-гостью". Когда затмение кончилось, она исчезла в дневном свете, следовательно, была еще недостаточно яркой и достигла максимума на следующий день. До начала июля, в течение почти двух месяцев, она могла быть ярче -3,5 звездной величины и при случае наблюдаться на синем фоне неба при еще не зашедшем Солнце. Длительное пребывание в максимуме также характерно, как мы знаем, для сверхновых II типа - это еще один аргумент в пользу такой классификации вспышки.

Помимо возможного наблюдения сверхновой в Армении теперь известны и другие обстоятельства, связанные со вспышкой 1054 г., достоверность которых условна, но они правдоподобно сочетаются с другими более надежными сведениями о сверхновой. Речь идет о наскальных изображениях в Северной Аризонской пустыне.

В 1955 г. американский археолог У. Миллер обнаружил там два наскальных рисунка необычного для североамериканских индейцев сюжета, а именно, содержащие мотивы лунного серпа и кружка, изображающего звезду (рис. 24). Один рисунок был в пещере на Белой Столовой горе и изображал молодую Луну с яркой звездой на нижнем роге, а другой, расположенный недалеко от первого на стене каньона Навахо, изображал серп, обращенный в другую сторону, т. е. старую Луну и звезду под ней.


Рис. 24. Аризонские наскальные изображения.
Левый рисунок найден в пещере Белой Столовой горы и изображает молодую Луну, сблизившуюся со звездой, правый рисунок находится на стене каньона Навахо; старая Луна и яркая звезда.

Остатки углей в очагах пещер и стиль рисунков в этой части каньона показали, что пещеры были населены индейцами Навахо в X-XII веках. Скорее всего, индейцы были поражены эффектным зрелищем соседства Луны и сверхновой 1054 г. Сближения Луны со звездами, находящимися на ее пути, происходят ровно через 27 суток и 7 часов. В частности, старая Луна сблизилась со сверхновой 4 июня 1054 г., вскоре после того, как она стала наблюдаться в Китае. Этому событию и мог соответствовать рисунок в каньоне. Что касается рисунка в пещере, то Миллер и астрономы, исследовавшие его позже, полагали, что древний художник перевернул изображение Луны, как это случается и с нашими современниками, если их врасплох просят нарисовать Луну по памяти. Для подтверждения этого факта были даже устроены массовые эксперименты, подтвердившие невнимательность наших современников. Ну и как уже повелось, снова обвинили в ошибках древнего художника.


Рис. 25. Кривые блеска пяти галактических сверхновых.
По горизонтали - фаза в сутках, по вертикали - видимые звездные величины. 1 - китайская Сверхновая 185 г. 2 - Сверхновая 1006 г. 3 - Сверхновая 1054 г., 4 - Сверхновая Браге 1572 г., 5 - Сверхновая Кеплера 1604 г.

Но сопоставление с современным человеком не выдерживает критики. Луна в эпоху неолита и долгое время после него была для людей не простым ночным светильником, но и часами и календарем. По положению на небе и по фазе можно было судить о времени суток и дне в лунном месяце. Перепутать молодую Луну со старой было еще невозможно потому, что молодая Луна видна вечером, а старая под утро.

Было изображено, очевидно, два различных события. И.С. Астапович обратил внимание на то, что рисунок в пещере, считавшийся перевернутым, соответствует как раз майскому сближению Луны со сверхновой, которое видели 10 мая в Армении при заходе. Но в Аризоне этот момент был днем, Луна стала видна только через несколько часов, когда стала садиться. Расстояние между ней и звездой при заходе в Аризоне было уже не минимальным.

На рис. 25 изображена предполагаемая кривая блеска Сверхновой 1054 г. В максимуме она достигала -5-й звездной величины, а фотометрический класс был, вероятно, II.5.

Поиски галактических сверхновых

В 1943-1945 гг. советский астроном Б.В. Кукаркин и американский астроном В. Бааде исследовали, независимо друг от друга, еще две галактические сверхновые. Это были самые яркие вспышки звезд накануне телескопической эпохи, известные как Новая Тихо Браге 1572 г. и Новая Иоганна Кеплера 1604 г. Наши современники воспользовались сравнениями блеска новых с блеском планет и соседних с ними звезд, приведенными в трудах Браге и Кеплера. Теперь можно точно вычислить звездные величины планет для любого момента в прошлом, и точно известны звездные величины звезд, видимых простым глазом. Это и позволило восстановить кривые блеска обеих ярких вспышек (они приведены на рис. 25). Неравно были разысканы еще и корейские исторические записи о Новой Кеплера, существенно пополнившие европейские наблюдения. Максимальный блеск Сверхновой 1572 г. по нашим определениям был -4.5, а Сверхновой 1604 г. -3.5, т. е. в обоих случаях он достигал блестка Венеры. Но самое интересное то, что их кривые блеска оказались не только определенно I типа, но обе лучше всего соответствовали фотометрическому классу I.12.

На местах вспышек сначала у Новой Кеплера, а затем и Новой Браге В. Бааде обнаружил слабые клочковато-волокнистые туманности. Хотя эти туманности в деталях отличаются от Крабовидной, это был все же новый признак для поисков сверхновых в нашей Галактике, в том числе тех, которые по тем или иным обстоятельствам не наблюдались как вспышки в прошлом. Поэтому было вполне естественным предположение, выдвинутое в 1946 г. Оортом, что большая волокнистая туманность в созвездии Лебедя тоже является остатком сверхновой, давно затормозившимся в межзвездном газе. Таких волокнистых туманностей на небе найдено уже свыше трех десятков. Самые яркие из них изучены советскими астрофизиками Г.А. Шайном и В.Ф. Газе. Все эти остатки сверхновых имеют возрасты тысячи лет.

В 1948 г. были обнаружены первые сильные источники космического радиоизлучения, причем некоторые из них лежали в области Млечного Пути. Эти источники получили название Стрелец А (впоследствии оказавшийся в ядре Галактики), Кассиопея А и Телец А. В то время радиотелескопы определяли положение радиоисточника на небе очень грубо, но все же уже через год австралийский радиоастроном Дж. Болтон и его коллеги обнаружили, что открытый ими ранее радиоисточник Телец А по положению совпадает с Крабовидной туманностью.

Исследование этого радиоисточника на нескольких длинах волн показало, что интенсивность его увеличивается с переходом к более длинным волнам. Это был важный факт, последствия которого были осмыслены позже. Мы уже знаем, что нагретые небесные тела излучают волны и в радиодиапазоне, но если источник излучения тепловой, то его интенсивность на радиоволнах убывает с переходом к более длинным волнам. В случае же Крабовидной туманности ход изменения интенсивности радиоизлучения с длиной волны иной: интенсивность возрастает с увеличением длин волн. Это показывает, что радиоизлучение объекта имеет нетепловой характер. Забегая вперед, отметим, что кроме остатков сверхновых нетепловое излучение имеется у внегалактических источников: радиогалактик и квазаров. Слабое нетепловое радиоизлучение порождает также межзвездная среда спиральных рукавах.

Обнаружение нетеплового радиоизлучения у Крабовидной туманности толкнуло на поиски остатков сверхновых по этому новому признаку. В 1952 г. Бааде нашел на месте, где наблюдается радиоисточник Кассиопея А, слабую волокнистую туманность. Советские астрономы П.П. Паренаго и И.С. Шкловский высказали предположение, что это тоже остаток сверхновой, возможно, даже наблюдавшейся в древнем Китае (в созвездии Кассиопеи древние наблюдатели видели много, вспышек). Другие исследователи, например Минковский, не согласились с их точкой зрения.

Но в 1955 г. Р. Минковский смог измерить движение сгустков этой туманности и обнаружил, что она, несмотря на несходство с Крабовидной туманностью, также является частью быстро расширяющейся оболочки. Ему пришлось отказаться от своих возражений. По расширению туманности удалось установить возраст этой сверхновой. Новейшие исследования канадских астрономов К. Кампера и С. ван ден Берга указывают дату вспышки около 1653 г. с неуверенностью около 3 лет. Значит, она произошла совсем недавно, уже после вспышек Сверхновых Браге и Кеплера, в эпоху телескопов Яна Гевелия, а между тем, ее не видели в таком всегда доступном наблюдениям, не заходящем в умеренных широтах нашего полушария созвездии Кассиопеи. Открытая благодаря радиоастрономии молодая сверхновая оказалась во многих отношениях исключительно интересным объектом.

К настоящему времени радиоастрономия позволила разыскать 135 нетепловых радиоисточников, принадлежащих нашей Галактике. Они являются остатками сверхновых разного возраста. Только для сравнительно молодых объектов, достаточно детально наблюдавшихся в прошлые века нашими предшественниками, мы умеем по кривым блеска установить тип, я иногда даже фотометрический класс сверхновой.

Наблюдения сверхновых в древности

Сбором сведений о старинных наблюдениях вспышек звезд, появлениях комет и других необычных явлений ученые занялись давно. Первые сводки таких данных, составленные по китайским, ближневосточным и европейским источникам, принадлежат французскому исследователю комет А.Г. Пингре, который в 1783 г. издал двухтомный труд "Кометография". Он пользовался некоторыми римскими и библейскими текстами, а также первыми переводами средневековой китайской энциклопедии "Вэньсянь тункао", составленной Ма Дуаньлинем, и некоторых других манускриптов, часть которых затем бесследно затерялась в эпоху Французской революции.

К сожалению, список Пингре был незаслуженно забыт и Гумбольдтом и Лундмарком. Полнейшее на сегодняшний день собрание всех явлений, считавшихся по тем или иным причинам вспышками звезд, составлено автором данной книги и вошло в международный "Общий каталог переменных звезд", регулярно пополняемый новыми данными.

С древнейших времен и до 1700 г. насчитывается около 200 вспышек, главным образом новых звезд, и розыски в летописях рукописях и хрониках продолжаются. Отметим, что до последнего времени считалось, что в Европе, Средиземноморье и на Ближнем Востоке наблюдалось мало вспышек: всего 5-7, а остальные видели в странах Дальнего Востока. Привлечение материалов Пингре, римских хроник показало, что на Западе было отмечено около 25 вспышек. Это уже серьезный вклад, который используется для перекрестного сравнения описаний вспышек.

Как же среди наблюдавшихся вспышек выявить сверхновые? Три яркие галактические сверхновые, о которых мы говорили на предшествующих страницах, достигали и превосходили звездную величину -3.5. И это не случайность. Чтобы вспышка звезды была легко обнаружена простым глазом, она должна быть по крайней мере 3-й звездной величины. Тогда она нарушает привычные фигуры созвездий и бросается в глаза. Такую величину в максимуме блеска будет иметь новая звезда, если она расположена от нас не далее тысячи световых лет. Зато сверхновая, вспыхнувшая в самой отдаленной части нашей Галактики, если бы межзвездное поглощение отсутствовало, была бы ярче нулевой звездной величины и наблюдалась, в зависимости от типа кривой блеска, от 3 до 8 месяцев. Таким образом, существует большая вероятность, что вспышка ярче нулевой звездной величины - это сверхновая звезда.

Вплоть до последних лет древнейшим дошедшим до нас сообщением о наблюдениях ярких светил было упоминание о комете 2296 г. до н. э., разысканное Пингре и содержащееся в записях устных преданий о первом китайском правителе Яо. Письменность в Китае возникла полутора тысячелетиями позже. Но несколько лет назад Дж. Михановским (США) была расшифрована глиняная дощечка шумеров (обитателей древней Месопотамии), на которой также была записана древнейшая устная легенда о "втором божестве-солнце", показавшемся в южной стороне неба, но вскоре померкшем и исчезнувшем. Это явление относят к 3-4 тысячелетиям до н. э. и связывают со вспышкой сверхновой, после которой остался самый близкий к нам остаток - туманность Паруса X.

Определенные и достоверные сведения мы имеем теперь о вспышке, по-видимому, сверхновой, которая была замечена в Китае 7 декабря 185 г. н. э. и была видна до июля 186 или 187 г. Вот как описывается это явление: "В период Чжун-Цин, во второй год, 10-ю луну в день Квэй-Хао появилась необыкновенная звезда посредине Нан-Мэн. Она была величиной с бамбуковые счеты и последовательно показывала пять цветов. Постепенно она уменьшала свой блеск к 6-й луне после следующего года, когда исчезла". В этом описании имеется дата явления, его длительность и место на небе, указан его характер: неподвижность среди звезд, ослабление блеска и изменение цвета. Заметим, что это единственное упоминание о явлении 185 г., другие сведения до нас не дошли.

Созвездие "Нан-Мэн" - это и Центавра. В Лояне, древней столице Китая, оно поднималось над горизонтом на три градуса и было видно не более двух часов за ночь, поэтому звезда должна быть исключительно яркой, чтобы ее заметили. Полагали, что вспышка наблюдалась 7 месяцев, но Ф. Стефенсон приводит доводы в пользу того, что соответствующий иероглиф в тексте нужно переводить не как "следующего года", а в смысле "последующего года", и оценивает длительность в 20 месяцев.

По нашему мнению, решающим доводом, свидетельствующим о вспышке именно сверхновой, а не новой звезды, является последовательное изменение цвета вспышки. Новые звезды практически не изменяют своего цвета, тогда как сверхновые в максимуме белые, а затем последовательно становятся желтыми, красными, снова желтыми и белыми. Поскольку в тексте говорится о пяти цветах, первые наблюдения относятся к стадии белого цвета т. е. к максимуму блеска.

Каков же был максимальный блеск сверхновой? Прямых сведений текст не дает, но мы можем его рассчитать по длительности явления. Семимесячная видимость звезды у самого горизонта говорит о звездной величине вспышки не выше -4, а 20-месячная - от -4-й до -8-й звездной величины. Получается довольно широкий выбор, который может быть ограничен, если найти остаток сверхновой.

Между и Центавра найдено четыре нетепловых радиоисточника, т. е. остатка сверхновых. Находящийся посредине совпадает со слабой волокнистой туманностью. Недавно обнаружено его тепловое рентгеновское излучение - признак сравнительной молодости остатка сверхновой. Возраст его, вычисляемый по интенсивности радиоизлучения, меньше возраста остальных трех, но превосходит 1700 лет, т. е. получается старше наблюдавшейся вспышки, что следует отнести за счет грубости этого метода определения возраста. Расстояние до остатка 2-3 кпс, и поэтому сверхновая I типа, вспыхнувшая на таком расстоянии, после ее ослабления межзвездным поглощением достигала бы -4-й величины, а в случае II типа была бы -2-й величины. По-видимому, лучше подходит I тип.

Попытки опознать вспышки сверхновых, описанные в старинных текстах, "с черного хода", пользуясь данными о галактических остатках сверхновых, были в большой моде лет двадцать назад. Слабым местом их были очень грубые указания хроник на области вспышек. Когда же стало возможным как-то, определять возрасты остатков, выявилась мнимость многих "отождествлений".

Важную роль теперь продолжают играть поиски старых текстов, в которых содержатся ценные астрономические сведения. Особенно поучительна в этом отношении история исследования Сверхновой 1006 г. Об этой вспышке, наблюдавшейся в южном созвездии Волка, у самого горизонта, найдены упоминания в семи японских, шести китайских, шести европейских, пяти арабских и одной корейской хрониках. Летописцы, описывающие явления, не всегда были профессиональными наблюдателями и очевидцами, но иногда встречаются и описания очевидцев. Таким был астролог Али бен Ридван, подробно описавший явление 1006 г., виденное им лично в молодости. Он хорошо помнил положение планет при появлении звезды, и американский исследователь Б. Голдстейн смог установить дату и место этого явления на небе. Сходные результаты он получил по китайским хроникам.

Как и в случае Сверхновой 1054 г., мы сталкиваемся здесь со скудостью сведений о блеске сверхновой. Любопытно, однако, что первое описание сверхновой 28 апреля, принадлежащее японским астрономам, отмечало бело-голубой цвет звезды, а последующие наблюдатели единодушно называют цвет звезды желтым и золотистым. Судя по этим сведениям, японцы видели эту сверхновую еще до того, как она достигла максимума блеска. В китайских источниках отмечалось также, что 1 мая блеск ее постепенно возрастал и приближался к блеску Венеры. В пяти источниках блеск сверхновой сравнивается с блеском неполной Луны, хотя никто не упоминает, что звезду видели и в дневное время. Конечно, в мае звезда восходила и заходила глубокой ночью. Даже если бы по блеску она была равна Венере, то производила бы огромное впечатление на фоне безлунной глубокой ночи, тогда как Венеру мы видим лишь в сумерки на светлом фоне зари. Тени от освещения сверхновой предметов также усиливали впечатление и служили, по-видимому, основанием для сравнений с неполной Луной. А фактически сверхновая могла казаться ярче Венеры, но слабее Луны в четверти. Али бен Ридван отмечает, что по "размерам" звезда превосходила Венеру в 2.5-3 раза. Это сравнение было "заочным", так как звезда восходила намного позже захода Венеры. Исследователи пытались пересчитывать оценку Али бен Ридвана, основываясь на старых арабских и на современных данных о видимых угловых размерах Венеры, но получилась бессмыслица. Али бен Ридван имел, очевидно, в виду, что звезда была ярче Венеры на 2-3 звездные величины. Поскольку в мае по вечерам Венера могла иметь -3-ю величину, сверхновая в максимуме блеска могла быть -6-й величины.

То обстоятельство; что в июле сверхновая должна была восходить в дневное время после полудня, но ее не видели на фоне дневного неба, свидетельствует что она в этом месяце, казалась слабее -3.5 величины. Когда она снова стала видна ночью, то еще выделялась по блеску среди окружающих звезд. С июля по конец ноября японские придворные астрономы девять раз сообщали о ее видимости императору. Китайские астрономы видели ее по утрам на востоке до самого конца года. В 1007 г. уже не было сведений о сверхновой. Правда, в одном источнике имеется сообщение, которое Голдстейн переводит как утверждение, что ее видели до 1016 г., но это явное недоразумение, так как в этом случае сверхновая в максимуме была бы так ярка, что долгое время сияла бы днем.

Рассмотрение обстоятельств видимости сверхновой говорит в пользу того, что это была сверхновая I типа. Среди нескольких источников нетеплового радиоизлучения в районе вспышки обнаружен один со следами газовых волокон и с характерным рентгеновским излучением. В 1979 т. недалеко от центра этого остатка сверхновой Ф. Швейцер и Дж. Миддледич обнаружили голубую звездочку 17-й величины, являющуюся, судя по спектру, белым карликом.

Забегая вперед, отметим, что к тому времени у двух остатков сверхновых - в Крабовидной туманности и Парусах Х уже были найдены и детально исследованы слабые голубые центральные звездочки, которые оказались мигающими с высокой частотой - 30 и 10 раз в секунду соответственно. Однако колебаний блеска звездочки Швейцера обнаружено не было. Могло оказаться, что эта звездочка случайно проектируется на радиоисточник и является одним из обычных объектов галактического диска перед или за остатком сверхновой. Но, с другой стороны, это мог быть и первый обнаруженный звездный остаток сверхновой I типа! Необходимо было как следует разобраться. И в январе 1982 г. со спутника, вооруженного ультрафиолетовыми спектрометрами, были получены спектры этого объекта от 1200 до 3200 . В спектрах были обнаружены линии поглощения, принадлежащие расширяющейся оболочке остатка сверхновой, расположенного перед звездой; смещение их указало скорость расширения в 5 - 6 тыс. км/с. Это сыграло решающую роль в установлении подлинной схемы развития вспышек сверхновых I типа.

Таблица 13. Галактические сверхновые
Сверхновая, год вспышки 185 1006 1054 1181 1572 1592 1604
Созвездие Центавр Волк Телец Кассиопея Кассиопея Кассиопея Змееносец
Страна или часть света, где заметили сверхновую Китай Азия, Африка Азия, Америка Азия Европа, Азия Корея Европа, Азия
Длительность наблюдения, сутки 225 240 710 185 560 100 365
Видимая звездная величина в максимуме -4 -6 -5 1 -4.5 2 -3.5
Фотометрический класс I тип I. 14 II. 5 II. 3 I. 12 ? I. 12
Скорость расширения оболочки, км/с - -8 000 -7 000 -8 000 -10 000 ? -10 000
Остаток сверхновой Есть Есть Телец А "Краб" 3С 58 Кассиопея B Кассиопея A Есть
Расстояние до остатка, кпс 2-3 4 2 8 5 3 10

Нам остается рассказать еще о яркой вспышке 1181 г., которую наблюдали, главным образом в Японии (Ф. Стефенсон насчитал шесть хроник, где она упоминалась), а так же в Китае и Европе. Она была видна полгода, одно время имела "сине-желтый" цвет и по блеску равнялась Сатурну. Вспышка произошла в созвездии Кассиопеи. Ослабление сверхновой на 4 величины за полгода характерно для II типа. На месте вспышки, установленном надежно, имеется открытый еще в 1952 г. радиоисточник нетеплового характера с яркой сердцевиной - "двойник" радиоисточника Телец А. Недавно здесь в сильно запыленном участке Млечного Пути удалось найти и волокнистую туманность, напоминающую Крабовидную. Это подтверждает принадлежность вспышки к сверхновым II типа.

Как часты вспышки сверхновых в Галактике?

К настоящему времени мы располагаем сравнительно небольшим списком наблюдавшихся сверхновых (табл. 13); в то же время найдено 135 радиоисточников, являющихся остатками сверхновых. Большинство остатков имеет большой возраст, находятся в Млечном Пути в областях сильного межзвездного поглощения. Поэтому их вспышки вообще вряд ли могли быть видны. Но среди остатков найдены и такие, вспышки которых произошли в середине прошлого века, но не наблюдались по указанным выше причинам.

Поскольку мы сами находимся в Галактике, а вспышки сверхновых не только грандиозное зрелище, но и, как мы увидим позже, влиятельный фактор в жизни нашей Солнечной системы, вопрос о том, как часты вспышки сверхновых в Галактике, далеко не академический, но и жизненно важный.

По табл. 11 в главе VII мы получили интервал между вспышками сверхновых в нашей Галактике 110 лет с неуверенностью в 60 %, т. е. возможны средние интервалы от 44 до 176 лет. Эти расчеты сделаны по наблюдениям вспышек сверхновых в других спиральных галактиках и основаны на предположении, что наша звездная система относится к типу Sb. Если же она типа Sc, то интервалы между вспышками должны быть уменьшены в 10 раз. Естественно, такие неопределенные выводы нужно проконтролировать непосредственным изучением частоты вспышек сверхновых в нашей Галактике.


Рис. 26. Расположение семи галактических сверхновых в проекции на главную плоскость Галактики.
Сверхновые отмечены датами вспышек. С - центр Галактики, - Солнце, расстояние между ними 10 кпс. НI - граница распространения нейтрального водорода в Галактике, НII-граница распространения ионизованного водорода (т. е. ярких газовых туманностей).

Недавно Г. Тамманн попытался вычислить средний интервал между вспышками по пяти сверхновым нашего тысячелетия: 1006, 1054, 1572 и 1604 гг. и Кассиопеи А. Сверхновая 1181 г. была им отброшена. Эти пять сверхновых расположены в секторе, имеющем центральный угол 50 o с вершиной в ядре Галактики (т. е. сектор составляет седьмую часть Галактики, см. рис. 26). Если мы разделим 1000 лет на пять, то получим интервал в 200 лет между вспышками в секторе или, разделив еще на 7, получим интервал в 28 лет между вспышками сверхновых для всей Галактики. Но внутри сектора имеются значительные области, где сильное поглощение света могло скрыть от нас вспышки. Кроме того, данные о средневековых наблюдениях сохранились только для северного полушария планеты, и поэтому могли остаться незамеченными вспышки в созвездиях около южного полюса неба. Не будем входить в детали соответствующих исправлений, а укажем лишь, что Тамманн получил в конце концов средний интервал в 12 лет или 8 сверхновых в столетие с возможным отклонением на 5 вспышек в ту или иную сторону.

Но можно было бы пойти по менее сложному пути. Возьмем вместо сектора с его большими неопределенностями окрестность вокруг Солнца в радиусе 8 кпс. Тогда, поскольку она хорошо изучена оптическими, рентгеновскими и радиоастрономическими методами, мы можем быть уверенными, что в ней было только шесть, молодых остатков, приведенных в табл. 13 минимум за последние 1800 лет, начиная со вспышки 185 г., а на самом деле и за еще более длительный срок. Вне окрестности оказалась сверхновая Кеплера 1604 г., вспыхнувшая где-то над центром Галактики.

Отметим, что две из шести сверхновых относятся ко II типу, а остальные - к типу I. Попробуем установить, где же вообще могут вспыхивать в Галактике сверхновые этих типов. Сверхновые I типа, судя по вспышкам в других звездных системах, встречаются на любых расстояниях от центра, а говоря более определенно - в области распространения неионизованного водорода, являющегося, в сущности, в значительной части продуктом деятельности сверхновых звезд. Что касается сверхновых II типа, то они связаны с молодыми звездами, область распространения которых в галактиках четко очерчивается светящимися газовыми туманностями - облаками ионизованного водорода.

Радиус распространения неионизованного водорода в Галактике 21 кпс, ионизованного - 16 кпс. Нетрудно поэтому вычислить долю, какую составляет наша окрестность радиусом 8 кпс, по отношению к соответствующей области распространения ионизационных стадий водорода в Галактике: 0.15 для неионизованного и 0.25 для ионизованного. В сущности, это единственные множители, которые нам нужны для вычисления средних интервалов между вспышками сверхновых обеих типов. Взяв минимальный интервал 1800 лет, мы получаем для I типа 1800:4*0.15 = 67 лет, а для II типа 1800:2*0.25 = 225 лет, или, не различая типов, около двух сверхновых в столетие. Эти числа можно считать верными с погрешностью до 50%, но, поскольку исследования радиоизлучения остатков сверхновых в зоне радиусом 8 кпс вокруг Солнца не обнаружили других объектов моложе 2500 лет, средние интервалы между вспышками, полученные выше, можно увеличить в 1.4 раза, а число вспышек за сто лет во столько же уменьшить.

Интересно отметить, что вспышки, наблюдавшиеся оптически, в течение двух Тысячелетий следовали друг за другом не с приблизительной равномерностью, "сериями": одна была во втором веке, затем был 8-вековой перерыв и в XI - XII веке произошли три вспышки, после чего снова была четырехвековая пауза, закончившаяся тремя вспышками, следовавшими в течение 32 лет на рубеже XVI - XVII веков. С тех пор длится новая четырехвековая пауза. "Серии" и "паузы" не заключают в себе особого физического смысла. Это чистые случайности в очередности малого числа событий. Так или иначе, но в течение последних четырех веков вспышки сверхновых происходили вне окрестности радиусом 8 кпс вокруг Солнца. Галактика "задолжала" нашей зоне по меньшей мере две сверхновых.

Положение Солнечной системы в Галактике таково, что нам оптически доступны наблюдения вспышек сверхновых примерно в половине ее объема, а в остальной части Галактики яркость вспышек приглушена межзвездным поглощением и удаленностью настолько, что даже в наше время они могут быть упущены и обнаружены после вспышки уже как радиоизлучающие остатки.

Вспышка сверхновой - явление поистине космического масштаба. Фактически, это взрыв колоссальной мощности, в результате которого звезда либо вообще перестает существовать, либо переходит в качественно новую форму - в виде нейтронной звезды или черной дыры. При этом внешние слои звезды оказываются выброшенными в пространство. Разлетаясь с большой скоростью, они порождают красивые светящиеся туманности.

Крабовидная туманность получила известность в 1758 году, когда астрономы ожидали возвращение кометы Галлея. Шарль Мессье, известный «ловец комет» того времени, искал хвостатую гостью среди рогов Тельца, где и было предсказано. Но вместо нее астроном обнаружил вытянутую туманность, смутившую его настолько, что он принял ее за комету. В дальнейшем, дабы избежать путаницы, Мессье решил составить каталог всех туманных объектов на небе. Крабовидная туманность вошла в каталог под номером 1. Этот снимок Крабовидной туманности получен телескопом «Хаббл». На нем видно множество деталей: газовые волокна, узлы, конденсации. Сегодня туманность расширяется со скорость около 1500 км/с, изменение ее размеров заметно на фотографиях, сделанных с интервалом всего в несколько лет. Общие размеры Крабовидной туманности превышают 5 световых лет.

Крабовидная туманность (или М1 по каталогу Ш. Мессье) - один из самых известных космических объектов. Дело здесь не в ее яркости или особой красоте, а в той роли, которую Крабовидная туманность сыграла в истории науки. Туманность представляет собой остаток от вспышки сверхновой звезды, произошедшей в 1054 году. Упоминания о появлении в этом месте очень яркой звезды сохранились в китайских хрониках. М1 находится в созвездии Тельца, рядом со звездой ζ; в темные прозрачные ночи ее можно увидеть с помощью бинокля.


Знаменитый объект Кассиопея А, самый яркий источник радиоизлучения на небе. Это остаток сверхновой, вспыхнувшей около 1667 года в созвездии Кассиопеи. Странно, но никаких упоминаний о яркой звезде в анналах второй половины XVII века мы не находим. Вероятно, в оптическом диапазоне ее излучение было сильно ослаблено межзвездной пылью. В результате последней наблюдавшейся сверхновой в нашей галактике остается по-прежнему сверхновая Кеплера.


Крабовидная туманность в оптике, тепловых и рентгеновских лучах. В центре туманности находится пульсар - сверхплотная нейтронная звезда, излучающая радиоволны и генерирующая рентгеновские лучи в окружающем ее веществе (рентгеновское излучение показано голубым). Наблюдения Крабовидной туманности на разных длинах волн дали астрономам фундаментальную информацию о нейтронных звездах, пульсарах и сверхновых. Это изображение - комбинация трех снимков, полученных космическими телескопами «Чандра», «Хаббл» и «Спитцер»


Остаток от сверхновой Тихо. Сверхновая вспыхнула в 1572 году в созвездии Кассиопеи. Яркую звезду наблюдал датчанин Тихо Браге, лучший астроном-наблюдатель дотелескопический эпохи. Книга, написанная Браге по следам этого события, имела колоссальное мировоззренческое значение, ведь в ту пору считалось, что звезды неизменны. Уже в наше время астрономы долго охотились за этой туманностью при помощи телескопов, и в 1952 году обнаружили ее радиоизлучение. Первый снимок в оптике был получен лишь в 1960-х годах


Остаток сверхновой в созвездии Парусов. Бо́льшая часть сверхновых в нашей Галактике появляется в плоскости Млечного Пути, так как именно здесь рождаются и проводят свою короткую жизнь массивные звезды. На этом снимке разглядеть волокнистые остатки сверхновой не так-то просто из-за обилия звезд и красных водородных туманностей, однако разлетающуюся сферическую оболочку все же можно выявить по ее зеленоватому свечению. Сверхновая в Парусах вспыхнула примерно 11-12 тысяч лет назад. Во время вспышки звезда выбросила в пространство громадную массу вещества, однако полностью не разрушилась: на ее месте остался пульсар, нейтронная звезда, излучающая радиоволны.


Туманность Карандаш (NGC 2736), часть оболочки сверхновой из созвездия Парусов. Фактически, туманность представляет собой ударную волну, распространяющуюся в космосе со скоростью полмиллиона километров в час (на снимке она летит снизу вверх). Несколько тысяч лет назад эта скорость была еще выше, однако давление окружающего межзвездного газа, каким бы ничтожным оно ни было, замедлило разлетающуюся оболочку сверхновой.


NGC 6962 или Восточная Вуаль крупным планом. Другое название этого объекта - Туманность Сеть


Туманность Симеиз 147 (она же Sh 2-240) - огромный остаток от взрыва сверхновой, находящийся на границе созвездий Тельца и Возничего. Туманность была открыта в 1952 году советскими астрономами Г. А. Шайном и В. Е. Газе на Симеизской обсерватории в Крыму. Взрыв произошел около 40000 лет назад, за это время разлетающееся вещество заняло участок неба в 36 раз больше площади полной Луны! Настоящие размеры туманности составляют впечатляющие 160 световых лет, а расстояние до нее оценивается в 3000 св. лет. Отличительная особенность объекта - длинные изогнутые газовые волокна, давшие туманности название Спагетти


Туманность Медуза, еще один хорошо известный остаток сверхновой, который находится в созвездии Близнецов. Расстояние до этой туманности известно плохо и составляет, вероятно, около 5 тысяч световых лет. Дата взрыва также известна весьма примерно: 3 - 30 тысяч лет назад. Яркая звезда справа - интересная переменная эта Близнецов, которую можно наблюдать (и изучать изменения ее блеска) невооруженным глазом


Последняя из вспышек сверхновых, наблюдавшихся невооруженным глазом, произошла в 1987 году в соседней галактике, Большом Магеллановом Облаке. Блеск сверхновой 1987А достиг 3 величины, что немало с учетом колоссального расстояния до нее (порядка 160000 св. лет); прародителем сверхновой была звезда голубой гипергигант. После взрыва на месте звезды осталась расширяющаяся туманность и загадочные кольца в виде цифры 8. Ученые предполагают, что причиной их появления может являться взаимодействие звёздного ветра звезды-предшественника с газом, выброшенным во время взрыва

Наше место в этом мире
Круговорот газа и пыли во вселенной
Вспышка сверхновой звезды


Мощное возмущение, вызванное взрывом, распространяется с огромной скоростью, а зона такого взрыва за несколько десятков тысяч лет покрывает гигантские области межзвездной среды. Физические условия таких областей резко отличаются от тех, что характеризуют "невозмущенную" среду: очень горячая (нагретая до нескольких миллионов градусов) плазма и значительно превышающие средние значения плотность космических лучей и напряженность магнитного поля. Выброшенное взорвавшейся звездой вещество, попадая в межзвездную среду, может участвовать в формировании новых звезд и планетных систем. Именно поэтому сверхновые звезды и их остатки являются одним из центральных объектов изучения для современной астрофизики, ведь здесь переплетаются такие важные проблемы, как эволюция нормальных звезд, рождение нейтронных звезд и других сколлапсировавших объектов, образование тяжелых элементов, космических лучей и многое другое.


Первоначально все звезды, блеск которых внезапно увеличивался более чем в 1 000 раз, называли новыми. Вспыхивая, такие звезды неожиданно появлялись на небе, нарушая привычную конфигурацию созвездия, и увеличивали свой блеск в максимуме, в несколько тысяч раз, затем их блеск начинал резко падать, а через несколько лет они становились такими же слабыми, какими были до вспышки. Повторяемость вспышек, при каждой из которых звезда с большой скоростью выбрасывает до одной тысячной своей массы, является для новых звезд характерной. И все же при всей грандиозности явления подобной вспышки оно не бывает связано ни с коренным изменением структуры звезды, ни с ее разрушением. За пять тысяч лет сохранились сведения о более чем 200 ярких вспышках звезд, если ограничиться такими, которые не превышали по блеску 3-ю звездную величину. Но когда была установлена внегалактическая природа туманностей, стало ясно, что вспыхивающие в них новые звезды по своим характеристикам превосходят обычные новые, так как их светимость часто оказывалась равной светимости всей галактики, в которой они вспыхивали. Необычайность таких явлений привела астрономов к мысли, что такие события - нечто совсем не похожее на обычные новые звезды, а потому в 1934 году по предложению американских астрономов Фрица Цвикки и Вальтера Бааде те звезды, вспышки которых в максимуме блеска достигают светимостей нормальных галактик, были выделены в отдельный, самый яркий по светимости и редкий класс сверхновых звезд.

В отличие от вспышек обыкновенных новых звезд вспышки сверхновых в современном состоянии нашей Галактики - явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о них содержатся в китайских и японских трактатах. В 1572 году вспышку такой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге, последним же, кто следил за явлением сверхновой в созвездии Змееносца в 1604 году, был Иоганн Кеплер. За четыре столетия «телескопической» эры в астрономии подобных вспышек в нашей Галактике не наблюдалось. Положение Солнечной системы в ней таково, что нам оптически доступны наблюдения вспышек сверхновых примерно в половине объема, а в остальной ее части яркость вспышек приглушена межзвездным поглощением. В.И. Красовский и И.С. Шкловский подсчитали, что вспышки сверхновых звезд в нашей Галактике происходят в среднем раз в 100 лет. В других галакти ках эти процессы происходят примерно с той же частотой, поэтому основные сведения о сверхновых в стадии оптической вспышки были получены по наблюдениям за ними в других галактиках.


ВЗРЫВ СВЕРХНОВОЙ CAS A

Понимая важность изучения столь мощных явлений, астрономы В. Бааде и Ф. Цвикки, работавшие на Паломарской обсерватории в США, в 1936 году начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволявший фотографировать области в несколько десятков квадратных градусов и дававший очень четкие изображения даже слабых звезд и галактик. За три года в разных галактиках ими были обнаружены 12 вспышек сверхновых, которые затем исследовались с помощью фотометрии и спектроскопии. По мере совершенствования наблюдательной техники количество вновь обнаруженных сверхновых неуклонно возрастало, а последующее внедрение автоматизированного поиска привело к лавинообразному росту числа открытий (более 100 сверхновых в год при общем количестве - 1 500). В последние годы на крупных телескопах был начат также поиск очень далеких и слабых сверхновых, так как их исследования могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. 3а одну ночь наблюдений на таких телескопах можно открыть более 10 далёких сверхновых.
В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью (порядка 10 000 км/с). Большая скорость расширения - главный признак, по которому остатки вспышек сверхновых отличают от других туманностей. В остатках сверхновых все говорит о взрыве огромной мощности, разметавшем наружные слои звезды и сообщившем отдельным кускам выброшенной оболочки огромные скорости.
Сверхновые на примере: Ни один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная тучтанность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому призкаку.
На Рис.: Крабовидная туманность. Новая последовательность изображений остатка огромного звездного взрыва, полученная телескопом «Хаббл», дает астрономам глубже заглянуть в динамику связи между маленьким пульсаром «Краб» и огромной туманностью, которую он обеспечивает энергией. Цветное фото слева представляет собой полученное наземным телескопом изображение почти всей Крабовидной туманности, которая сформировалась после взрыва сверхновой более 900 лет назад. Туманность, размером 10 световых лет в поперечнике, расположена на расстоянии 7 000 световых лет в созвездии Тельца. Зеленые, желтые и красные волокна, сосредоточенные по краям туманности, являются остатком звезды, который был выброшен в пространсто взрывом. В центре Крабовидной тyманности лежит пульсар «Краб» - сколапсировавшее ядро взорвавшейся звезды. Синее сияние во внутренней части туманности - это свет, который излучают энергетические электроны. Изображение справа получено космическим телескопом «Хаббл» и представляет собой внутренние области «Краба». Сам пульсар виден как левая из пары эвезд вблизи центра кадра. Пульсар окружен комплексом четких узлов и клочковатых образований. Это - одна из последовательностей изображений, которые получал "Хаббл" на протяжении нескольких месяцев. Она показывает, что внутренняя часть Крабовидной туманности более динамична, чем полагали ранее.

-20 000 лет назад. Более крупная звезда в двойной системе раздувается, становясь красным гигантом.
-Красный гигант отдает материю голубой звезде, причем некоторая часть формирует диск.
-Две звезды сливаются в одну голубую звезду, окруженную газовым диском.
-"Ветер" со звезды создает отверстие в диске.
-Февраль 1987 г. Вспышка сверхновой освещает внутренний край кольца.
-1991-1996 гг. Взрывная волна и поток обломков быстро распространяется в пространстве.
-1997 г. Взрывная волна достигает внутреннего края кольца, вызывая точечные вспышки.
-2007 г. Вспышки происходят по всему внутрен-нему краю, формируя светящееся кольцо.

ВЗРЫВ 1987А

На рис.: Сверхновая Cas A. Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, - на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее - это остаток вспышки сверхновой, имевшей место около 300 лет назад.
Характерное для старых остатков сверхновых радиоизлучение показала и система волокнистых туманностей в созвездии Лебедя. Радиоастрономия помогла отыскать еще много других нетепловых радиоисточников, которые оказались остатками сверхновых разного возраста. Таким образом, был сделан вывод, что остатки вспышек сверхновых, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным нетепловым радиоизлучением.
Как уже говорилось, Крабовидная туманность стала первым объектом, у которого было обнаружено рентгеновское излучение. В 1964 году удалось обнаружить, что источник рентгеновского излучения, исходящего из нее, протяженный, хотя его угловые размеры в 5 раз меньше угловых размеров самой Крабовидной туманности. Из чего был cделан вывод, что рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность.
Разноцветные струи, пересекающие небо на снимке, полученном космическим телескопом «Хаббла», созданы одним из самых больших «фейерверков», зарегистрированных в истории нашей галактики, - огромным взрывом массивной звезды. Свет от нее достиг Земли 320 лет назад. Клочковатые остатки мертвой звезды названы Кассиопея А, или, коротко, «Cas А». Этот самый молодой из известных остатков сверхновых в нашей Галактике Млечный Путь находится на расстоянии 10 000 световых лет в созвездии Кассиопеи. Свет от взрыва сверхновой достиг Земли в 1600 году, а сам взрыв произошел 10 000 годами раньше. Это фото показывает верхний край расширяющейся оболочки остатка сверхновой. Вверху изображения видны дюжины крошечных клочков материи. Каждый маленький комочек изначально был небольшим фрагментом звезды, в десятки раз большей, чем вся Солнечная система. 3везда, которая создала их, была огромна: в 15-25 раз массивнее нашего Солнца. Такие звезды обычно живут недолго, используя свой запас ядерного топлива за десятки миллионов лет (в 1 000 раз быстрее, чем наше Солнце). Этот потрясающий снимок Cas А позволяет астрономам подробно изучить остатки сверхновой, показывая впервые, что они состоят из маленьких остывающих клубков газа. Это вещество будет использовано для создания нового поколения звезд и планет. Возможно, наше Солнце и планеты Солнечной системы созданы из остатков сверхновой, которая взорвалась миллиарды лет назад.
На рис.: Сверхновая 1987А. Сверкающие звезды и клочья газа создают захватывающий дух фон для картины саморазрушения массивной звезды, названной сверхновой 1987А. Ее взрыв астрономы наблюдали в Южном полушарии 23 февраля 1987 года. Это изображение, полученное телескопом «Хаббл», показывает остатки сверхновой, окруженные внутренним и внешним кольцами вещества в диффузных облаках газа. Этот трехцветный снимок составлен из нескольких фотографий сверхновой и соседней с ней области, которые были сделаны в сентябре 1994, феврале 1996 и июле 1997 года. Многочисленнные яркие голубые звезды вблизи сверхновой - это массивные звезды, каждая из которых возрастом окало 12 млн. лет и в 6 раз тяжелее Солнца. Все они относятся к тому же поколению звезд, что и взорвавшаяся. Присутствие ярких газовых облаков - еще один признак молодости этой области, которая все еще является плодородной почвой для рождения новых звезд. «Хаббл» обнаружил кольца светящегося газа, опоясывающие место взрыва сверхновой 1987А. Возможно, два кольца могут быть «нарисованы» высокоэнергетическим излучением или частицами, аналогично тому, как световой лазерный луч чертит круги на экране. Источником излучения могут быть ранее неизвестные звездные остатки второго компонента звезды, взорвавшейся в 1987 году. На изображении, полученном «Хабблом», виден слабосветящийся объект на месте предполагаемого источника.
Кольцо на изображении [A] полученном телескопом «Хаббл» в 1994 году, показывает светящееся газовое кольцо вокруг сверхновой 1987А. Изображение [B] - недавние наблюдения 1997 года телескопа «Хаббл» показывают увеличение яркости узлов на верхней правой стороне кольца. Это место мощных столкновений между движущейся наружу взрывной волной и внутренними частями околозвездного кольца. Столкновения нагревают газ и заставляют его светить ярче. Это, вероятно, первый сигнал драматических и сильных столкновений, которые будут иметь место в последующие несколько лет, омолаживая сверхновую как мощный источник рентгеновского и радиоизлучения. Белая серпообразная материя в центре - видимая часть рассеянной звезды, несущаяся со скоростью 3 000 км/с, которая нагревается радиоактивными элементами, возникшими при взрыве звезды.
Влияние сверхновых

Сверхновые. 23 февраля 1987 года в соседней с нами галактике - Большом Магеллановом Облаке - вспыхнула сверхновая, ставшая чрезвычайно важной для астрономов, поскольку была первой, которую они, вооружившись современными астрономическими инструментами, могли изучить в деталях. И эта звезда дала подтверждение целой серии предсказаний. Одновременно с оптической вспышкой специальные детекторы, установленные на территории Японии и в штате Огайо (США), зарегистрировали поток нейтрино-элементарных частиц, рождающихся при очень высоких температурах процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Эти наблюдения подтвердили ранее высказанное предположение о том, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино в тот момент, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. В последние годы появились указания на связь некоторых космических гамма-всплесков со сверхновыми. Возможно, и природа космических гамма-всплесков связана с природой взрывов.
Вспышки сверхновых оказывают сильное и многообразное влияние на окружающую межзвездную среду. Сбрасываемая с огромной скоростью оболочка сверхноной сгребает и сжимает окружающий ее газ, что может дать толчок к образованию из облаков газа новых звезд. Группа астрономов во главе с доктором Джоном Хьюгесом (Rutgers University), используя наблюдении на орбитальной рентгеновской обсерватории «Чандра» (NASA), сделала важное открытие, проливающее свет на то, как при вспышках сверхновой звезды образуются кремний, железо и другие элементы. Рентгеновское изображение остатка сверхновой Cassiopeia А (Cas А) позволяет увидеть сгустки кремния, серы и железа, выброшенные при взрыве из внутренних областей звезды. Высокое качество, четкость и информативность получаемых обсерваторией «Чандра» изображений остатка сверхновой Cas А позволили астрономам не только определить химический состав многих узлов этого остатка, но и узнать, где именно эти узлы образовались. Например, самые компактные и яркие узлы состоят главным образом из кремния и серы с очень малым содержанием железа. Это указывает на то, что они образовались глубоко внутри звезды, где температура достигала трех миллиардов градусов во время коллапса, закончившегося взрывом сверхновой. В других узлах астрономы обнаружили очень большое содержание железа с примесями некоторого количества кремния и серы. Это вещество образовалось еще глубже - в тех частях, где температура во время взрыва достигала более высоких значений - от четырех до пяти миллиардов градусов. Сравнение расположений в остатке сверхновой Cas А богатых кремнием как ярких, так и более слабых узлов, обогащенных железом, позволило обнаружить, что «железные» детали, происходящие из самых глубоких слоев звезды, располагаются на внешних краях остатка. Это означает, что взрыв выбросил «железные» узлы далыше всех остальных. И даже сейчас они, по-видимому, удаляются от центра взрыва с большей скоростью. Изучение полученных «Чандрой» данных позволит остановиться на одном из нескольких предложенных теоретиками механизмов, объясняющих природу вспышки сверхновой, динамику процесса и происхождение новых элементов.
Исследования показали, что сверхновые не представляют собой однородной группы объектов - как спектры, так и кривые блеска (изменение блеска со временем) сверхновых существенно различались, спектральная классификация разделила их на два типа: SN I и SN II.


Результаты 14-часовых наблюдений обсерватории «Чандра» за остатком сверхновой Cas А дали наилучшее распределение тяжелых элементов, выброшенных во время взрыва. Вверху слева - широкополосное рентгеновское изображение Cas A. Остальные изображения созданы лучами от ионов кремния (вверху справа), ионов кальция (внизу слева), ионов железа (внизу справа). Эти элементы являются частью газа с температурой около 50 млн. °С. Цвета представляют интенсивность рентгеновского излучения: от желтого (самого интенсивного), красного и фиолетового до зеленого (наименее интенсивного).
СВЕРХНОВАЯ CAS A

Сверхновые SN I имеют весьма сходные спектры (c отсутствием водородных линий) и формы кривых блеска, в то время как спектры SN II содержат яркие линии водорода и отличаются разнообразием как спектров, так и кривых блеска. В таком виде классификация сверхновых существовала до середины 80-х годов прошлого столетия. А с началом широкого применения ПЗС - приемников количество и качество наблюдательного материала существенно возросли, что позволило получать спектрограммы для недоступных прежде слабых объектов, с гораздо большей точностью определять интенсивность и ширину линий, а также регистрировать в спектрах более слабые линии. В результате казавшаяся установившейся двоичная классификация сверхновых стала быстро изменяться и усложняться. Различаются сверхновые и по типам галактик, в которых они вспыхивают. В спиральных галактиках вспыхивают сверхновые обоих типов, а вот в эллиптических, где почти нет межзвездной среды и процесс звездообразования закончился, наблюдаются только сверхновые типа SN I, очевидно, до взрыва - это очень старые звезды, массы которых близки к солнечной. А так как спектры и кривые блеска сверхновых этого типа очень похожи, то, значит, и в спиральных галактиках взрываются такие же звезды. Закономерный конец эволюционного пути звезд с массами, близкими к солнечной, - превращение в белого карлика с одновременным образованием планетарной туманности. В составе белого карлика почти нет водорода, поскольку он является конечным продуктом эволюции нормальной звезды.
Ежегодно в нашей Галактике образуется несколько планетарных туманностей, следовательно, большая часть звезд такой массы спокойно завершает свой жизненный путь, и только раз в сто лет происходит вспышка сверхновой SN I типа. Какие же причины определяют совершенно особый финал, не схожий с судьбой других таких же звезд? Знаменитый индийский астрофизик С. Чандрасекар показал, что в том случае, если белый карлик имеет массу, меньшую, чем примерно 1,4 массы Солнца, он будет спокойно "доживать" свой век. Но если он находится в достаточно тесной двойной системе, его мощная гравитация способна «стягивать» материю со звезды-компаньона, что приводит к постепенному увеличению массы, и когда она переходит допустимый предел - происходит мощный взрыв, приводящий к гибели звезды.
СВЕРХНОВАЯ G11.2-0.3
На этом изображении, полученном обсерваторией «Чандра», ясно обозначен пульсар в геометрическом центре остатка сверхновой, известной как G11.2-0.3. «Чандра» получила весомое подтверждение того, что пульсар был сформирован сверхновой 386 года, зарегистрированной китайскими астрономами. Определить подлинный возраст астрономических объектов очень трудно, поэтому исторические записи, касающиеся явлений сверхновых, имеют очень большое значение. Если это открытие подтвердится, то данный пульсар станет только вторым пульсаром, точно связанным с историческим событием.


Сверхновые SN II явно связаны с молодыми, массивными звездами, в оболочках которых в большом количестве присутствует водород. Вспышки этого типа сверхновых считают конечной стадией эволюции звезд с начальной массой более 8-10 масс Солнца. Вообще же, эволюция таких звезд протекает достаточно быстро - за несколько миллионов лет они сжигают свой водород, затем - гелий, превращающийся в углерод, а затем и атомы углерода начинают преобразовываться в атомы с более высокими атомными номерами. В природе превращения злементов с большим выделением энергии заканчиваются на железе, ядра которого являются самыми стабильными, и выделения энергии при их слиянии не происходит. Таким образом, когда ядро звезды становится железным, выделение энергии в нем прекращается, сопротивляться гравитационным силам оно уже не может, а потому начинает быстро сжиматься, или коллапсировать. Процессы, происходящие при коллапсе, все еще далеки от полного понимания. Однако известно, что если все вещество ядра превращается в нейтроны, то оно может противостоять силам притяжения - ядро звезды превращается в «нейтронную звезду», и коллапс останавливается. При этом выделяется огромная энергия, поступающая в оболочку звезды и вызывающая расширение, которое мы и видим как вспышку сверхновой. Из этого следовало ожидать генетическую связь между вспышками сверхновых и образованием нейтронных звезд и черных дыр. Если эволюция звезды до этого происходила «спокойно», то ее оболочка должна иметь радиус, в сотни раз превосходящий радиус Солнца, а также сохранить достаточное количество водорода для объяснения спектра сверхновых SN II.
Пульсары. О том, что после взрыва сверхновой кроме расширяющейся оболочки и различных типов излучений остаются и другие объекты, стало известно в 1968 году благодаря тому, что годом раньше радиоастрономы открыли пульсары - радиоисточники, излучение которых сосредоточено в отдельных импульсах, повторяющихся через строго определенный промежуток времени. Ученые были поражены строгой периодичностью импульсов и краткостью их периодов. Наибольшее же внимание вызнал пульсар, координаты которого были близки к координатам очень интересной для астрономов туманности, расположенной и южном созвездии Парусов, которая считается остатком вспышки сверхновой звезды - его период составлял всего лишь 0,089 секунды. А после открытия пульсара в центре Крабовидной туманности (его период составлял 1/30 секунды) стало ясно, что пульсары каким-то образом связаны с взрывами сверхновых. В январе 1969 года пульсар из Крабовидной туманности был отождествлен со слабой звездочкой 16-й величины, изменяющей свой блеск с таким же периодом, а в 1977 году удалось отождествить со звездой и пульсар в созвездии Пapycoв.
Периодичность излучения пульсаров связана с их быстрым вращением, но ни одна обычная звезда, даже белый карлик, не могла бы вращаться с периодом, характерным для пульсаров - она была бы немедленно разорвана центробежными силами, и только нейтронная звезда, очень, плотная и компактная, могла бы устоять перед ними. В результате анализа множества вариантов ученые пришли к заключению, что взрывы сверхновых сопровождаются образованием нейтронных звёзд - качественно нового типа объектов, существование которых было предсказано теорией эволюции звезд большой массы.
Черные дыры. Первое доказательство прямой связи между взрывом сверхновой и образованием черной дыры удалось получить испанским астрономам. В результате исследования излучения, испускаемого звездой, вращающейся вокруг черной дыры и двойной системе Nova Scorpii 1994, обнаружилось, что она содержит большое количество кислорода, магния, кремния и серы. Есть предположение, что эти элементы были захвачены ею, когда соседняя звезда, пережив взрыв сверхновой, превратилась в чёрную дыру. Сверхновые (в особенности же сверхновые типа Ia) являются одними из самых ярких звездообразных объектов но Вселенной, поэтому даже самые удаленные из них вполне можно исследовать с помощью имеющегося в настоящее время оборудования. Многие сверхновые типа Ia были открыты в относительно близких галактиках. Достаточно точные оценки расстояний до этих галактик позволили определить светимость вспыхивающих в них сверхновых. Если считать, что далекие сверхновые имеют в среднем такую же светимость, то по наблюдаемой звёздной величине в максимуме блеска можно оценить и расстояние до них. Сопоставление же расстояния до сверхноновой со скоростью удаления (красным смещением) галактики, в которой она вспыхнула, дает возможность определить основную величину, характеризующую расширение Вселенной - так называемую постоянную Хаббла.
Еще 10 лет назад для нее получали значения, различающиеся почти в два раза - от 53 по 100 км/с Мпк, на сегодняшний же момент точность удалось значительно увеличить, в результате чего принимается значение 72 км/с Мпк (с ошибкой около 10%). Для далеких сверхновых, красное смещение которых близко к 1, соотношение между расстоянием и красным смещением позволяет также определить величины, зависящие от плотности вещества во Вселенной. Согласно общей теории относительности Эйнштейна именно плотность вещества oпpeделяет кривизну пространства, а следовательно, и дальнейшую судьбу Вселенной. А именно: будет ли она расширяться бесконечно или этот процесс когда-нибудь остановится и сменится сжатием. Последние исследования сверхновых показали, что скорее всего плотность вещества во Вселенной недостаточна, чтобы остановить расширение, и оно будет продолжаться. А для того чтобы подтвердить этот вывод, необходимы новые наблюдения сверхновых.

Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо , либо .

Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.

Как происходит взрыв

Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии. Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру. После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.

В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.

Сверхновая типа Ia

Этот вид сверхновых рождается не из звезд, а из . Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по . Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.

Возможно, завтра они вспыхнут

Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:

  • IK Пегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
  • Антарес . Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
  • Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

Тестировал возможности новой камеры, прикрепив ее к 40-сантиметровому телескопу. Для съемки он выбрал спиральную галактику NGC 613, расположенную в 80 млн световых лет в созвездии Скульптора, крупном созвездии в южном полушарии. Бузо на протяжении полутора часов снимал галактику с 20-секундной выдержкой, чтобы избежать засвечивания огнями города. В течение первых 20 минут фотографии выглядели одинаково.

А затем Бузо заметил яркую точку в конце одного из рукавов галактики и понял, что происходит что-то необыкновенное. Но не смог определить, что именно, и обратился за помощью к профессионалам.

Ознакомившись со снимками, астроном Мелина Берстен и ее коллеги из Института астрофизики в Ла-Плате поняли, что

Босо удалось зафиксировать редчайшее событие — вспышку сверхновой.

При вспышке сверхновой светимость звезды резко увеличивается на четыре-восемь порядков, а затем вспышка медленно затухает. Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвездное пространство. Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Взрывную волну, которую зафиксировал на камеру Бузо, можно наблюдать лишь в первые несколько часов. Заснять взрыв сложно, так как невозможно предсказать, когда он произойдет. До сих пор это никому не удавалось. По словам Берстен, шанс такого открытия — один на 10, если не на 100 миллионов.

Однако Бузо удалось зафиксировать самое начало этого процесса.

Victor Buso/Gaston Folatelli

«Фактически, некоторые исследователи уже стали задаваться вопросом, насколько верны теоретические модели взрыва сверхновой, — объясняет Берстен, возглавившая исследование. —

Наблюдения Бузо чрезвычайно ценны, даже в лотерею проще выиграть, чем сделать что-то подобное».

«Это как выиграть в космическую лотерею», — подтверждает астрофизик Алексей Филиппенко из Калифорнийского университета в Беркли, участвовавший в наблюдениях за сверхновой после взрыва. Данные о наблюдениях были опубликованы 21 февраля этого года в журнале Nature , ученые упомянули Бузо в числе соавторов.

«Данные Бузо исключительны, — отмечает Филиппенко. — Это великолепный пример партнерства любителей и профессиональных астрономов».

В течение двух месяцев после открытия сверхновой, получившей название SN 2016gkg, астрономы наблюдали за ней с помощью телескопов обсерватории Кека и Ликской обсерватории. Основываясь на открытии и дальнейших наблюдениях, Берстен и ее коллеги определили, что сверхновая была частью двойной звездной системы, которая потеряла внешние слои газа, сохранив лишь ядро, состоящее преимущественно из гелия. Спектральные данные показали, что это сверхновая типа IIb — массивная звезда, которая уже потеряла большую часть своей массы до взрыва.

Команда подсчитала, что масса SN 2016gkg была примерно в 20 раз больше массы Солнца, но к моменту взрыва звезда потеряла 3/4 массы. Сейчас, когда SN 2016gkg стала сверхновой, она уменьшилась до пяти солнечных масс.

Долгожданные визуальные данные помогут астрономам получить больше информации о структуре звезды непосредственно перед ее взрывом, а также информацию о самом взрыве.

«Профессиональные астрономы давно ждали чего-то подобного, — говорит Филиппенко. — Наблюдения за звездами в первые моменты взрыва предоставляют информацию, которая не может быть напрямую получена каким-либо другим способом».

В ноябре 2017 года «Газета.Ru» рассказывала о еще одном необычном открытии —

Которая пережила уже несколько взрывов и отказывается затухать.

Сверхновую iPTF14hls астрономы обнаружили в ходе астрономического обзора Palomar Transient Factory в сентябре 2014 года. Спустя несколько месяцев астрономы из обсерватории Лас Кумбрес в США заметили, что звезда перестала затухать и начала становиться ярче. Пересмотрев архивные данные, исследователи выяснили, что сверхновая в этом же месте была обнаружена в 1954 году. Каким-то образом она пережила взрыв и продолжила сиять, а затем снова взорвалась 50 лет спустя.

По подсчетам исследователей, до взрыва масса звезды в 50 раз превышала массу Солнца. Масштабы взрыва звезды, возможно, связаны с ее необычным поведением, предполагают они. Сверхновая iPTF14hls может оказаться первым обнаруженным примером пульсирующей парно-нестабильной сверхновой.

«Согласно этой теории, возможно, звезда была настолько массивной и горячей, что при взрыве породила антивещество в своем ядре. Это могло стать причиной того, что звезда была нестабильной и за годы существования пережила несколько вспышек, — предполагают исследователи. — Такие взрывы, как считается, были возможны только на раннем этапе существования Вселенной и сегодня уже не должны происходить. Это все равно, что встретить динозавра».