Применение электротехнических материалов. Назначение и классификация электротехнических материалов Классификация электромонтажных материалов

  • 05.10.2023

В статье приводится информация о видах материалов применяемых при изготовлении электродвигателей, генераторов и трансформаторов. Даются краткие технические характеристики некоторых из них.

Классификация электротехнических материалов

Материалы, применяемые в электрических машинах, подразделяются на три категории: конструктивные, активные и изоляционные.

Конструктивные материалы

применяются для изготовления таких деталей и частей машины, главным назначением которых является восприятие и передача механических нагрузок (валы, станины, подшипниковые щиты и стояки, различные крепежные детали и так далее). В качестве конструктивных материалов в электрических машинах используется , чугун, цветные металлы и их сплавы, пластмассы. К этим материалам предъявляются требования, общие в машиностроении.

Активные материалы

подразделяются на проводниковые и магнитные и предназначаются для изготовления активных частей машины (обмотки и сердечники магнитопроводов).
Изоляционные материалы применяются для электрической изоляции обмоток и других токоведущих частей, а также для изоляции листов электротехнической стали друг от друга в расслоенных магнитных сердечниках. Отдельную группу составляют материалы, из которых изготовляются электрические щетки, применяемые для отвода тока с подвижных частей электрических машин.

Ниже дается краткая характеристика активных и изоляционных материалов, используемых в электрических машинах.

Проводниковые материалы

Благодаря хорошей электропроводности и относительной дешевизне в качестве в электрических машинах широко применяется электротехническая , а в последнее время также рафинированный . Сравнительные свойства этих материалов приведены в таблице 1. В ряде случаев обмотки электрических машин изготовляются из медных и алюминиевых сплавов, свойства которых изменяются в широких пределах в зависимости от их состава. Медные сплавы используются также для изготовления вспомогательных токоведущих частей (коллекторные пластины, контактные кольца, болты и так далее). В целях экономии цветных металлов или увеличения механической прочности такие части иногда выполняются также из стали.

Таблица 1

Физические свойства меди и алюминия

Материал Сорт Плотность, г/см 3 Удельное сопротивление при 20°C, Ом×м Температурный коэффициент сопротивления при ϑ °C, 1/°C Коэффициент линейного расширения, 1/°C Удельная теплоемкость, Дж/(кг×°C) Удельная теплопроводность, Вт/(кг×°C)
Медь Электротехническая отожженная 8,9 (17,24÷17,54)×10 -9 1,68×10 -5 390 390
Алюминий Рафинированный 2,6-2,7 28,2×10 -9 2,3×10 -5 940 210

Температурный коэффициент сопротивления меди при температуре ϑ °C

Зависимость сопротивления меди от температуры используется для определения повышения температуры обмотки электрической машины при ее работе в горячем состоянии ϑ г над температурой окружающей среды ϑ о. На основании соотношения (2) для вычисления превышения температуры

Δϑ = ϑ г - ϑ о

можно получить формулу

(3)

где r г - сопротивление обмотки в горячем состоянии; r x - сопротивление обмотки, измеренное в холодном состоянии, когда температуры обмотки и окружающей среды одинаковы; ϑ x - температура обмотки в холодном состоянии; ϑ о - температура окружающей среды при работе машины, когда измеряется сопротивление r г.

Соотношения (1), (2) и (3) применимы также для алюминиевых обмоток, если в них заменить 235 на 245.

Магнитные материалы

Для изготовления отдельных частей магнитопроводов электрических машин применяется листовая электротехническая сталь, листовая конструкционная сталь, листовая сталь и чугун. Чугун вследствие невысоких магнитных свойств используется относительно редко.

Наиболее важный класс магнитных материалов составляют различные сорта листовой электротехнической стали. Для уменьшения потерь на и в ее состав вводят кремний. Наличие примесей углерода, кислорода и азота снижает качество электротехнической стали. Большое влияние на качество электротехнической стали оказывает технология ее изготовления. Обычную листовую электротехническую сталь получают путем горячей прокатки. В последние годы быстро растет применение холоднокатанной текстурированной стали, магнитные свойства которой при перемагничивании вдоль направления прокатки значительно выше, чем у обычной стали.

Сортамент электротехнической стали и физические свойства отдельных марок этой стали определяются ГОСТ 21427.0-75.

В электрических машинах применяются главным образом электротехнические стали марок 1211, 1212, 1213, 1311, 1312, 1411, 1412, 1511, 1512, 3411, 3412, 3413, которые соответствуют старым обозначениям марок сталей Э11, Э12, Э13, Э21, Э22, Э31, Э32, Э41, Э42, Э310, Э320, Э330. Первая цифра обозначает класс стали по структурному состоянию и виду прокатки: 1 - горячекатаная изотропная, 2 - холоднокатаная изотропная, 3 - холоднокатаная анизотропная с ребровой текстурой. Вторая цифра показывает содержание кремния. Третья цифра указывает группу по основной нормируемой характеристике: 0 - удельные потери при B = 1,7 T и f = 50 Гц (p 1,7/50), 1 - удельные потери при B = 1,5 T и частоте f = 50 Гц (p 1,5/50), 2 - удельные потери при магнитной индукции B = 1,0 T и частоте f = 400 Гц (p 1,0/400), 6 - магнитная индукция в слабых полях при 0,4 А/м (B 0,4), и 7 - магнитная индукция в средних магнитных полях при напряженности магнитного поля 10А/м (B 10). Четвертая цифра - порядковый номер. Свойство электротехнической стали в зависимости от содержания кремния приведены в таблице 2

Таблица 2

Зависимость физических свойств электротехнической стали от содержания кремния

Cвойства Вторая цифра марки стали
2 3 4 5

Плотность, г/см 3

Удельное сопротивление, Ом×м

Температурный коэффициент сопротивления, 1/°C

Удельная теплоемкость, Дж/(кг×°C)

С увеличением содержания кремния возрастает хрупкость стали. В связи с этим, чем меньше машина и, следовательно, чем меньше размеры зубцов и пазов, в которые укладываются обмотки, тем труднее использовать стали с повышенной и высокой степенью легирования. Поэтому, например, высоколегированная сталь применяется главным образом для изготовления трансформаторов и очень мощных генераторов .

В машинах с частотой тока до 100 Гц обычно применяются листовая электротехническая сталь толщиной 0,5 мм, а иногда также, в особенности в трансформаторах, сталь толщиной 0,35 мм. При более высоких частотах используется более тонкая сталь. Размеры листов электротехнической стали стандартизированы, причем ширина листов составляет 240 - 1000 мм, а длина 1500 - 2000 мм. В последнее время расширяется выпуск электротехнической стали в виде ленты, наматываемой на рулоны.

Рис. 1. Кривые намагничивания ферромагнитных материалов

1 - электротехническая сталь 1121, 1311; 2 - электротехническая сталь 1411, 1511; 3 - малоуглеродистые литая сталь, стальной прокат и поковки для электрических машин; 4 - листовая сталь толщиной 1-2 мм для полюсов; 5 - сталь 10; 6 - сталь 30; 7 - холоднокатаная электротехническая сталь 3413; 8 - серый чугун с содержанием: С - 3,2%, Si 3,27%, Мп - 0,56%, Р - 1,05%; I × А - масштабы по осям I и А; II × Б - масштабы по осям II и Б

На рисунке 1 представлены различных марок стали и чугуна, а в таблице 3, согласно ГОСТ 21427.0-75, - значения удельных потерь p в наиболее распространенных марках электротехнической стали. Индекс у буквы p указывает на индукцию B в теслах (числитель) и на частоту f перемагничивания в герцах (знаменатель), при которых гарантируются приведенные в таблице 3 значения потерь. Для марок 3411, 3412 и 3413 потери даны для случая намагничивания вдоль направления прокатки.

Таблица 3

Удельные потери в электротехнической стали

Марка стали Толщина листа, мм Удельные потери, Вт/кг Марка стали Толщина листа, мм Удельные потери, Вт/кг
p 1,0/50 p 1,5/50 p 1,7/50 p 1,0/50 p 1,5/50 p 1,7/50
1211 0,5 3,3 7,7 - 1512 0,5 1,4 3,1 -
1212 0,5 3,1 7,2 - 0,35 1,2 2,8 -
1213 0,5 2,8 6,5 - 1513 0,5 1,25 2,9 -
1311 0,5 2,5 6,1 - 0,35 1,05 2,5 -
1312 0,5 2,2 5,3 - 3411 0,5 1,1 2,45 3,2
1411 0,5 2,0 4,4 - 0,35 0,8 1,75 2,5
1412 0,5 1,8 3,9 - 3412 0,5 0,95 2,1 2,8
1511 0,5 1,55 3,5 - 0,35 0,7 1,5 2,2
0,35 1,35 3,0 - 3413 0,5 0,8 1,75 2,5
0,35 0,6 1,3 1,9

Потери на вихревые токи зависят от квадрата индукции, а потери на гистерезис - от индукции в степени, близкой к двум. Поэтому и общие потери в стали с достаточной для практических целей точностью можно считать зависящими от квадрата индукции. Потери на вихревые токи пропорциональны квадрату частоты, а на гистерезис - первой степени частоты. При частоте 50 Гц и толщине листов 0,35 - 0,5 мм потери на гистерезис превышают потери на вихревые токи в несколько раз. Зависимость общих потерь в стали от частоты вследствие этого ближе к первой степени частоты. Поэтому удельные потери для значений B и f , отличных от указанных в таблице 3, можно вычислять по формулам:

(4)

где значение B подставляется в теслах (Т).

Приведенные в таблице 3 значения удельных потерь соответствуют случаю, когда листы изолированы друг от друга.

Для изоляции применяется специальный лак или, весьма редко, тонкая бумага, а также используется оксидирование.

При штамповке возникает наклеп листов электротехнической стали. Кроме того, при сборке пакетов сердечников происходит частичное замыкание листов по их кромкам вследствие появления при штамповке грата или заусенцев. Это увеличивает потери в стали в 1,5 - 4,0 раз.

Из-за наличия между листами стали изоляции, их волнистости и неоднородности по толщине не весь объем спрессованного сердечника заполнен сталью. Коэффициент заполнения пакета сталью при изоляции лаком в среднем составляет k c = 0,93 при толщине листов 0,5 мм и k c = 0,90 при 0,35 мм.

Изоляционные материалы

К электроизоляционным материалам, применяемым в электрических машинах, предъявляются следующие требования: по возможности высокие , механическая прочность, нагревостойкость и теплопроводность, а также малая гигроскопичность. Важно, чтобы изоляция была по возможности тонкой, так как увеличение толщины изоляции ухудшает теплоотдачу и приводит к уменьшению коэффициента заполнения паза проводниковым материалом, что в свою очередь вызывает уменьшение номинальной мощности машины. В ряде случаев возникают также и другие требования, например устойчивость против различных микроорганизмов в условиях влажного тропического климата и так далее На практике все эти требования могут быть удовлетворены в разной степени.

Видео 1. Изоляционные материалы в электротехнике XVIII - XIX веков.

Изоляционные материалы могут быть твердые, жидкие и газообразные. Газообразными обычно являются воздух и водород, которые представляют собой по отношению к машине окружающую или охлаждающую среду и одновременно в ряде случаев играют роль электрической изоляции. Жидкие находят применение главным образом в трансформаторостроении в виде специального сорта минерального масла, называемого трансформаторным.

Наибольшее значение в электромашиностроении имеют твердые изоляционные материалы. Их можно разбить на следующие группы: 1) естественные органические волокнистые материалы - хлопчатая бумага, материалы на основе древесной целлюлозы и шелк; 2) неорганические материалы - слюда, стекловолокно, асбест; 3) различные синтетические материалы в виде смол, пленок, листового материала и так далее; 4) различные эмали, лаки и компаунды на основе природных и синтетических материалов.
В последние годы органические волокнистые изоляционные материалы все больше вытесняются синтетическими материалами.

Эмали применяются для изоляции проводов и в качестве покровной изоляции обмоток. Лаки используются для склейки слоистой изоляции и для пропитки обмоток, а также для нанесения покровного защитного слоя на изоляцию. Дву- или трехкратной пропиткой обмоток лаками, чередуемой с просушками, достигается заполнение пор в изоляции, что повышает теплопроводность и электрическую прочность изоляции, уменьшает ее гигроскопичность и скрепляет элементы изоляции в механическом отношении.

Пропитка компаундами служит такой же цели, как и пропитка лаками. Разница заключается только в том, что компаунды не имеют летучих растворителей, а представляют собой весьма консистентную массу, которая при нагревании размягчается, сжижается и способна под давлением проникать в поры изоляции. Ввиду отсутствия растворителей заполнение пор при компаундировании получается более плотным.
Важнейшей характеристикой изоляционных материалов является их нагревостойкость, которая решающим образом влияет на надежность работы и срок службы электрических машин. По нагревостойкости , применяемые в электрических машинах и аппаратах, подразделяются, согласно ГОСТ 8865-70, на семь классов со следующими предельно допустимыми температурами ϑ макс:

В стандартах прежних лет содержатся старые обозначения некоторых классов изоляции: вместо Y, E, F, H соответственно О, АВ, ВС, СВ.

К классу Y относятся не пропитанные жидкими диэлектриками и не погруженные в них волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, а также ряд синтетических полимеров (полиэтилен, полистирол, поливинилхлорид и др.). Этот класс изоляции в электрических машинах применяется редко.

Класс A включает в себя волокнистые материалы из хлопчатой бумаги, целлюлозы и шелка, пропитанные жидкими электроизоляционными материалами или погруженные в них, изоляцию эмаль-проводов на основе масляных и полиамиднорезольных лаков (капрон), полиамидные пленки, бутилкаучуковые и другие материалы, а также пропитанное дерево и древесные слоистые пластики. Пропитывающими веществами для этого класса изоляции являются трансформаторное масло, масляные и асфальтовые лаки и другие вещества с соответствующей нагревостойкостью. К данному классу относятся различные лакоткани, ленты, электротехнический картон, гетинакс, текстолит и другие изоляционные изделия. Изоляция класса A широко применяется для вращающихся электрических машин мощностью до 100 кВт и выше, а также в трансформаторостроении.

К классу E относится изоляция эмаль-проводов и электрическая изоляция на основе поливинилацеталевых (винифлекс, металвин), полиуретановых, эпоксидных, полиэфирных (лавсан) смол и других синтетических материалов с аналогичной нагревостойкостью. Класс изоляции E включает в себя новые синтетические материалы, применение которых быстро расширяется в машинах малой и средней мощности (до 10 кВт и выше).

Класс B объединяет изоляционные материалы на основе неорганических диэлектриков (слюда, асбест, стекловолокно) и клеящих, пропиточных и покровных лаков и смол повышенной нагревостойкости органического происхождения, причем содержание органических веществ по массе не должно превышать 50%. Сюда относятся прежде всего материалы на основе тонкой щипаной слюды (микалента, микафолий, миканит), широко применяемые в электромашиностроении.

В последнее время используются также слюдинитовые материалы, в основе которых лежит непрерывная слюдяная лента из пластинок слюды размерами до нескольких миллиметров и толщиной в несколько микрон.

К классу B принадлежат также различные синтетические материалы: полиэфирные смолы на основе фталевого ангидрида, полихлортрифторэтилен (фторопласт-3), некоторые полиуретановые смолы, пластмассы с неорганическим заполнителем и др.

Изоляция класса F включает в себя материалы на основе слюды, асбеста и стекловолокна, но с применением органических лаков и смол, модифицированных кремнийорганическими (полиорганосилоксановыми) и другими смолами с высокой нагревостойкостью, или же с применением других синтетических смол соответствующей нагревостойкости (полиэфирные смолы на основе изо- и терефталевой кислот и др.). Изоляция этого класса не должна содержать хлопчатой бумаги, целлюлозы и шелка.

К классу H относится изоляция на основе слюды, стекловолокна и асбеста в сочетании с кремнийорганическими (полиорганосилоксановыми), полиорганометаллосилксановыми и другими нагревостойкими смолами. С применением таких смол изготовляются миканиты и слюдиниты, а также стекломиканиты, стекломикафолий, стекломикаленты, стеклослюдиниты, стеклолакоткани и стеклотекстолиты.

К классу H относится и изоляция на основе политетрафторэтилена (фторопласт-4). Материалы класса H применяются в электрических машинах, работающих в весьма тяжелых условиях (горная и металлургическая промышленность, транспортные установки и пр.).

К классу изоляции C принадлежат слюда, кварц, стекловолокно, стекло, фарфор и другие керамические материалы, применяемые без органических связующих или с неорганическими связующими.

Под воздействием тепла, вибраций и других физико-химических факторов происходит старение изоляции, т. е. постепенная потеря ею механической прочности и изолирующих свойств. Опытным путем установлено, что срок службы изоляции классов A и B снижается в два раза при повышении температуры на каждые 8-10° сверх 100°C. Аналогичным образом снижается при повышении температуры также срок службы изоляции других классов.

Электрические щетки

подразделяются на две группы: 1) угольно-графитные, графитные и электрографитированные; 2) металлографитные. Для изготовления щеток первой группы используется сажа, измельченные природный графит и антрацит с каменноугольной смолой в качестве связующего. Заготовки щеток подвергаются обжигу, режим которого определяет структурную форму графита в изделии. При высоких температурах обжига достигается перевод углерода, находящегося в саже и антраците, в форму графита, вследствие чего такой процесс обжига называется графитированием. Щетки второй группы содержат также металлы (медь, серебро). Наиболее распространены щетки первой группы.

В таблице 4 приводятся характеристики ряда марок щеток.

Таблица 4

Технические характеристики электрических щеток

Класс щеток Марка Номинальная , А/см 2 Максимальная окружная скорость, м/с Удельное нажатие, Н/см 2 Переходное на пару щеток, В Коэффициент трения Характер при котором рекомендуется применение щеток

Угольно-графитные

УГ4 7 12 2-2,5 1,6-2,6 0,25 Несколько затрудненная

Графитные

Г8 11 25 2-3 1,5-2,3 0,25 Нормальная
Электрографитированные ЭГ4 12 40 1,5-2 1,6-2,4 0,20 Нормальная
ЭГ8 10 40 2-4 1,9-2,9 0,25 Самая затрудненная
ЭГ12 10-11 40 2-3 2,5-3,5 0,25 Затрудненная
ЭГ84 9 45 2-3 2,5-3,5 0,25 Самая затрудненная

Медно-графитные

МГ2 20 20 1,8-2,3 0,3-0,7 0,20 Самая легкая

Лекция 1

Введение. Предмет и содержание курса. Классификация электротехнических материалов по свойствам и областям применения. Роль электротехнических материалов в развитии энергетики.

Каждый специалист, работающий в области электро- и радиотехники должен знать перечень основных электрических, магнитных, механических и др. характеристик , которыми обладают материалы диэлектрические, полупроводниковые, проводниковые, магнитные и конструкционные. При изготовлении и ремонте радио и электротехнического оборудования необходимы детали и узлы, выполненные из материалов определенных классов и обладающие конкретными электрическими и магнитными характеристиками, а для несущих деталей – и механическими характеристиками. Зная для каждого класса материалов перечень этих характеристик, необходимо знать единицы их измерения и порядок величины, а также то, как (и почему) эти характеристики изменяются под действием температуры, величины и частоты напряжения, механической нагрузки и т.д.

Хочу вас обрадовать, определенный запас знаний по данному курсу у вас уже имеется. Так, например, покупая одежду, обувь и другие товары, вы выбираете их, руководствуясь не только формой, размером и условиями эксплуатации (зимой или летом, в дождливую или влажную погоду и т.д.), но и характеристиками материалов, из которого они изготовлены, - цветом, теплопроводностью, стойкостью к воде, солнечному свету и т.д.

Материаловедение – наука, занимающая изучением состава, структуры, свойств материалов, поведением материалов при различных воздействиях: тепловых, электрических, магнитных и т.д., а также при сочетании этих воздействий.

Электротехническое материаловедение – раздел материаловедения, который занимается материалами для электротехники и энергетики, т.е. материалами, обладающими специфическими свойствами, необходимыми для конструирования, производства и эксплуатации электротехнического оборудования.



В настоящем курсе «Материаловедение», ч. II будут рассмотрены:

ü Строение и свойства металлических и неметаллических электротехнических материалов;

ü Мы подробно рассмотрим особенности поляризации, электропроводности, диэлектрических потерь и пробоя диэлектриков, изучим процесс электрического старения изоляции;

ü Будут изучены новые электротехнические материалы: активные диэлектрики, проводники, сверхпроводники, применяемые в современных устройствах.

ü Будут рассмотрены физика явлений, имеющих место в диэлектриках, полупроводниках, проводниках и магнитных материалах, находящихся в электрическом или магнитном поле;

Для лучшего понимания изучаемого материала на лекционных занятиях будет использоваться мультипроектор, некоторая информация будет представлена в виде раздаточного материала.

На изучение курса предусмотрено 6 часов лекций и лабораторных занятий, 36 часов самостоятельной работы. По окончанию – зачет.

Для изучения курса вам понадобится следующая литература:

1. Н.П. Богородицкий. Электротехнические материалы: Учебник для вузов / Н.П. Богородицкий, В.В. Пасынков, Б.М. Тареев. – Л.: Энергоатомиздат., 1985.

2. Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для вузов / С.Н. Колесов, И.С. Колесов. – 2-е изд., перераб. и доп. - М.: Высш. шк., 2007. - 535 с.: ил.

3. Пасынков В.В. Материалы электронной техники: Учебник для вузов / В.В. Пасынков, В.С. Сорокин. – М.: Высш. шк., 2003.

4. Новиков Л.И. Методические указания к лабораторным занятиям № 1, 2, 3, 4: Методические указания / Л.И. Новиков. - Киров, изд. ВятГУ, 2007.

5. Новиков Л.И. Методические указания к лабораторным занятиям № 6: Методические указания / Л.И. Новиков. - Киров, изд. ВятГУ, 2007.

Роль материалов в развитии электро- и радиотехники

Современное электрооборудование представляет собой сложное устройство с большим количеством разнообразных деталей, для изготовления которых требуется широкий ассортимент различных электротехнических и конструкционных материалов с вполне определенными электрическими, механическими и химическими свойствами, которые зависят от их химического состава и строения, а также интенсивности внешнего энергетического воздействия (напряженности и частоты электрического поля, температуры, давления и т.п.). Без знания основных свойств ЭТМ, без понимания физических процессов, протекающих в ЭТМ при помещении их в электрическое или магнитное поле, без понимания связи этих процессов с химическим составом и строением материала нельзя спроектировать и изготовить электротехническую аппаратуру, невозможно грамотно ее эксплуатировать. Поэтому, главной задачей науки материаловедение является:

1. Изучение основных физических процессов, протекающих в материалах при воздействии на них электрического, магнитного или теплового полей и механического напряжения;

2. Изучение зависимости электрических, механических и других свойств материалов от их химического состава и строения;

3. Описание свойств и знакомство с материалами, наиболее часто применяемыми в производстве электрооборудования.

Классификация электротехнических материалов по свойствам и областям применения

Для начала отметим, что же такое материал.

Материал – это объект, обладающий определенным составом, структурой и свойствами, предназначенный для выполнения определенных функций.

Материалы различаются по:

1. Агрегатному состоянию:

a. Твердое;

b. Жидкое;

c. Газообразное;

d. Плазменное (состояние ионизированного газа, в котором концентрация положительных и отрицательных зарядов равны).

2. Выполняемым функциям . Функции, которые выполняют материалы разнообразны:

a. Обеспечение протекания тока – проводниковые материалы;

b. Сохранение определенной формы при механических нагрузках (КМ);

c. Обеспечение изоляции – диэлектрические материалы;

d. Превращение электрической энергии в тепловую – резистивные материалы.

Обычно материал выполняет несколько функций. Например, диэлектрик обязательно испытывает какие-то механические нагрузки, то есть является конструкционным материалом.

Классификация веществ по электрическим свойствам:

В процессе изготовления и в различных условиях эксплуатации радиоэлектронной аппаратуры на ЭТМ воздействуют электрическое и магнитное поля (в отдельности и совместно). ПО поведению в электрическом поле эти материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.

Классификация ЭТМ по электрическим свойствам основана на представлениях зонной теории электропроводности твердых тел, сущность которой состоит в следующем.

Общеизвестно, что в подавляющем большинстве твердых тел электрический ток обусловлен движением электронов. Такие электроны называются электронами проводимости. Они появляются во внешних, удаленных от ядра областях атома. Эти области формируют в твердом теле валентные зоны. Чтобы возник электрический ток, электроны должны из валентной зоны взобраться выше по энергетической шкале и перейти в зону проводимости, преодолев при этом зону запрещенных значений энергии, или запрещенную зону. Если все три упомянутые зоны разместить по оси энергии, то зона с меньшей энергией будет валентной, далее идет запрещенная зона и потом зона с наибольшей энергией - зона проводимости.

Как валентная зона, так и зона проводимости представляют собой очень плотную упаковку из множества доступных для электронов дискретных уровней энергии - энергетических «изолиний». Эти уровни расположены так близко друг к другу, что практически сливаются в непрерывную полосу, которая и называется энергетической зоной. Напротив, в запрещенной зоне доступных для электрона энергетических уровней вообще нет, и электроны там находиться не могут. Итак, чтобы возник электрический ток, необходимо, чтобы электроны из валентной зоны перескочили через запрещенную зону и попали в зону проводимости.

Как известно из школьного курса физики, вещества, в зависимости от того, как они проводят электрический ток, можно разделить на металлы, полупроводники и диэлектрики. С точки зрения зонной теории металлы - это твердые тела, у которых запрещенная зона отсутствует, вместо нее наблюдается сильное перекрытие валентной и проводящей зон. Получается, что электронам в металле нет необходимости тратить энергию на преодоление запрещенной зоны, а потому под внешним воздействием - в электрическом поле - они легко переходят в зону проводимости. Отсюда легко понять, почему металлы - хорошие проводники.

В диэлектриках ширина запрещенной зоны значительно больше тепловой энергии электронов даже при комнатной температуре, а значит, подавляющее большинство потенциальных носителей тока не могут перепрыгнуть в зону проводимости - им не хватает энергии. Преодоление запрещенной зоны может произойти лишь при очень сильных полях (тогда наблюдается электрический пробой диэлектрика) или очень высоких температурах.

И наконец, если ширина запрещенной зоны сравнима с энергией теплового движения электронов, то мы имеем полупроводник. Повышение температуры экспоненциальным образом увеличивает количество электронов, прыгающих через запрещенную зону в зону проводимости.

Если W равна или близка к нулю, то электроны могут перейти на свободные уровни благодаря собственной тепловой энергии и увеличить проводимость вещества. Вещества с такой структурой энергетических зон относятся к проводникам . Проводниковые материалы служат для проведения электрического тока. Обычно к проводникам относятся вещества с удельным электрическим сопротивлением ρ < 10 -5 Ом×м. Типичными проводниками являются металлы.

Если значение запрещенной зоны превышает несколько электрон-вольт (1 эВ - энергия электрона, полученная им при перемещении между двумя точками электрического поля с разностью потенциалов 1 В), то для перехода электронов из валентной зоны в зону проводимости требуется значительная энергия. Такие вещества относятся к диэлектрикам . Диэлектрики имеют высокое удельное электрическое сопротивление и обладают способностью препятствовать прохождению тока. К диэлектрическим материалам относятся вещества с удельным электрическим сопротив­лением р > 107 Ом м. Благодаря высокому удельному электриче­скому сопротивлению их используют в качестве электроизоляци­онных материалов.

Если значение запрещенной зоны составляет 0,1...0,3 эВ, то электроны легко переходят из валентной зоны в зону проводимости благодаря внешней энергии. Вещества с управляемой прово­димостью относятся к полупроводникам . Удельное электрическое сопротивление полупроводников составляет 10 -6 ... 10 9 Ом×м. Полупроводниковые материалы обладают проводимостью, с помощью которой можно управлять напряжением, температурой, освещенностью и т.д.

В зависимости от структуры и внешних условий материалы могут переходить из одного класса в другой. Например, твердые и жидкие металлы - проводники, а пары металлов - диэлектрики; типичные при нормальных условиях полупроводники германий и кремний при воздействии высоких гидростатических давлений становятся проводниками; углерод в модификации алмаза - диэ­лектрик, а в модификации графита - проводник.

Диэлектрик обладает способностью поляризоваться под действием приложенного электрического поля и подразделяются:

1. Пассивные диэлектрики. Применяются:

a. Для создание электрической изоляции токопроводящих частей. Они препятствуют прохождение тока другими, нежелательными путями и являются материалами электроизоляционными.

b. В конденсаторах для создания определенной электрической емкости.

2. Активные диэлектрики. Применяются для изготовления активных элементов электрических схем. Служат для генерации, усиления, преобразования электрического сигнала.

Полупроводник по величине удельной электропроводности занимают промежуточное положение между диэлектриками и проводниками. Характерной их особенностью является существенная зависимость электропроводности от интенсивности внешнего энергетического воздействия: напряженности электрического поля, температуры, освещенности, длины волны падающего света, давления и т.п.

Проводники подразделяются на 4 подкласса:

1. Материалы высокой проводимости. Используются там, где необходимо, чтобы ток протекал с минимальными потерями. К таким материалам относят металлы: Cu, Al, Fe, Ag, Au, Pt и сплавы на их основе. Из них изготавливают провода, кабели, токопроводящие части электроустановок.

2. Сверхпроводники – материалы, у которых при температурах ниже некоторой критической Т кр сопротивление электрическому току становится равным 0.

3. Криопроводники – это материалы высокой проводимости, работающие при криогенных температурах (температуре кипения жидкости азота – 195 о С).

4. Проводниковые материалы высокого сопротивления – металлические сплавы, образующие твердые растворы.

Магнитные – материалы, предназначенные для работы в магнитном поле при непосредственном взаимодействии с этим полем. К ним относят ферромагнетики и ферриты. Собственное магнитное поле в сотни и тысячи раз больше, чем вызывающее его внешнее магнитное поле. Они способны сильно намагничиваться даже в слабых полях, а некоторые из них сохраняют намагниченность и после снятия внешнего магнитного поля. К наиболее широко используемым в технике магнитным материалам относятся Fe, Co, Ni.

Материалы, используемые для изготовления любого по назначе­нию и степени сложности электрооборудования, можно разделить на две большие группы: электротехнические и конструкционные .

Электротехнические материалы (ЭТМ)применяют для произ­водства элементов (деталей), используемых для сборки электрон­ных схем и обеспечивающих прохождение электрического тока, его электрическую изоляцию, генерацию, усиление, выпрямление, мо­дуляцию и т.п. Элементы, необходимые для осуществления этих операций (провода, кабели, волноводы, изоляторы, резисторы, ка­тушки индуктивности, магниты, трансформаторы, генераторы, дио­ды, транзисторы, термисторы, фоторезисторы, электронные лампы, электромеханические преобразователи, вариконды, лазеры, запо­минающие устройства электронных вычислительных машин (ЭВМ) и т.п.), могут быть изготовлены толь­ко из ЭТМ определенного класса, имеющих вполне определенные физико-химические свойства – электрофизические, механические, химические. От присущих данному материалу свойств будут зави­сеть качество, надежность и безопасность работы данной детали и, следовательно, электроустановки в целом.

Конструкционные материалы (КМ) используют для изготовления несущих конструкций и вспомогательных деталей и узлов, например: стальных рельсов, опор, консолей контактной сети электрифици­рованных железных дорог, которые несут не только механические нагрузки, но и электрические; корпусов для электрооборудования, предохраняющих от механических нагрузок; шасси, на которых мон­тируется электросхема; шкал, органов управления и т.п.

При рассмотрении средней по сложности электрической схемы можно увидеть, что она состоит из элементов, изготовленных из че­тырех основных классов электротехнических материалов: диэлектри­ческих, полупроводниковых, проводниковых и магнитных.

По сво­ему поведению в электрическом поле ЭТМ подразделяются на три класса: диэлектрические, полупроводниковые и проводниковые. Значения их удельного сопротивления находятся соответственно в пределах: 10 -8 – 10 -5 , 10 -6 – 10 8 ,10 7 – 10 17 Ом-м, а значения ширины за­прещенной зоны соответственно равны 0 – 0,05; 0,05 – 3 и более 3эВ. По сво­ему поведению в магнитном же поле ЭТМ подразделяются на два класса: магнитные (сильномагнит­ные) и немагнитные (слабомагнитные). К первым относятся ферро- и ферримагнетики, а ко вторым – диа-, пара- и антиферромаг­нетики.

Диэлектрические материалы обладают способностью поляризо­ваться под действием приложенного электрического поля и подраз­деляются на два подкласса: диэлектрики пассивные и активные.

Пассивные диэлектрики (или просто диэлектрики) используют:

1) для создания электрической изоляции токопроводящих час­тей – они препятствуют прохождению электрического тока другими, нежелательными путями и являются материалами электроизоляци­онными;

2) в электрических конденсаторах – служат для создания определенной электрической емкости; в данном случае важную роль играет их диэлектрическая проницаемость: чем выше эта величина, тем меньше габариты и вес конденсаторов.

Активные диэлектрики в отличие от обычных применяют для из­готовления активных элементов (деталей) электрических схем. Де­тали, изготовленные из них, служат для генерации, усиления, моду­ляции, преобразования электрического сигнала.


К ним относятся: сегнето- и пьезоэлектрики, электреты, люминофоры, жидкие кри­сталлы, электрооптические материалы и др.

Полупроводниковые материалы по величине удельной электро­проводности занимают промежуточное положение между диэлек­триками и проводниками. Характерной их особенностью является существенная зависимость электропроводности от интенсивности внешнего энергетического воздействия: напряженности электриче­ского поля, температуры, освещенности, длины волны падающего света, давления и т.п. Эта их особенность положена в основу работы полупроводниковых приборов: диодов, транзисторов, термисторов, фоторезисторов, тензодатчиков и др.

Проводниковые материалы подразделяются на четыре подкласса:

1) материалы высокой проводимости;

2) сверхпроводники и криопроводники;

3) материалы высокого (заданного) сопротивления;

4) контактные материалы.

Материалы высокой проводимости используют там, где необходи­мо, чтобы электрический ток проходил с минимальными потерями. К таким материалам относятся металлы: Сu, А1, Fе, Аg, Аu, Рt и сплавы на их основе. Из них изготавливают провода, кабели и другие токопроводящие части электроустановок.

Сверхпроводниками являются материалы, у которых при темпера­турах ниже некоторой критической (Т кр ) сопротивление электрическо­му току становится равным нулю.

Криопроводники – это материалы высокой проводимости, рабо­тающие при криогенных температурах (температуре кипения жидко­го азота -195,6 о С).

Проводниковыми материалами высокого (заданного) сопротивле­ния являются металлические сплавы, образующие твердые растворы. Из них изготавливают резисторы, термопары и электронагреватель­ные элементы.

Из контактных материалов изготавливают скользящие и разрыв­ные контакты. В зависимости от предъявляемых требований эти ма­териалы очень разнообразны по своему составу и строению. К ним относятся, с одной стороны, металлы высокой проводимости (Сu, Аg, Аu, Рt и т.п.) и сплавы на их основе, с другой – тугоплавкие ме­таллы (W, Та, Мо и др.) и композиционные материалы. Последние хоть и имеют относительно высокое электрическое сопротивление, обладают повышенной стойкостью к действию электрической дуги, образующейся при разрыве контактов.

К магнитным материалам , используемым в технике, относят фер­ромагнетики и ферриты. Их магнитная проницаемость имеет высо­кие значения (до 1,5 . 106) и зависит от напряженности внешнего маг­нитного поля и температуры. Магнитные материалы применяют для концентрации магнитного поля в сердечниках катушек индуктивно­сти, дросселях и других конструкциях, в качестве магнитопроводов запоминающих устройств в ЭВМ и т.п. Они способны сильно намаг­ничиваться даже в слабых полях, а некоторые из них сохраняют на­магниченность и после снятия внешнего магнитного поля. К наибо­лее широко используемым в технике магнитным материалам относятся Fе, Со, Ni и их сплавы.

Конструкционные материалы – одна из самых многочисленных групп. В нее входят материалы металлические и неметаллические: черные и цветные металлы, природные и синтетические полимеры и материалы на их основе, которые, в свою очередь, содержат десятки (и даже сотни) различных по составу, свойствам и назначению КМ. Наиболее широко используемыми в технике КМ являются такие ме­таллические сплавы, как углеродистые стали, легированные стали и чугуны.

ЛЕКЦИЯ 10

ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ

Электротехническими материалами (например, контактными материалами) называют материалы, характеризуемые определенными свойствами по отношению к электрическим и магнитным полям и применяемые в технике с учетом и благодаря этим свойствам. В настоящее время число наименований электротехнических материалов, применяемых в радио-, микро-, и наноэлектронике составляет несколько тысяч. Причем все более актуальным является задача создания новых материалов с заданными свойствами (оптическими, полупроводниковыми, эмиссионными и т. д.)

Основными областями использования электротехнических материалов является электроэнергетика, электротехника, радиоэлектроника.

Электроэнергетика – это производство энергии и ее поставка потребителю. Это линии электропередач, трансформаторные станции, энергетическое хозяйство.

Электротехника – это все, что связано с превращением электрической энергии в другие виды энергии с одновременно осуществлением технологических процессов:

электротермических, - электросварочных,- электрофизических,- электрохимических и др.

Радиотехника – это системы управления энергетическими и электро-техническими объектами, передача информации, ее обработка, хранение и т. д.

Совершенствование электротехнологии повлекло за собой создание материалов, обладающих новыми свойствами: более высокой прочностью, термостойкостью, устойчивостью к агрессивному воздействию химических реакций, и имеющих высокие электроизоляционные свойства и низкую теплопроводность.

Классификация электротехнических материалов

Материалы, используемые в электронной технике, подразделяют на электротехнические, конструкционные и специального назначения.

По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные (магнетики) и слабомагнитные. Первые нашли особенно широкое применение в технике благодаря их магнитным свойствам.

По поведению в электрическом поле материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.

Большинство электротехнических материалов можно отнести к слабомагнитным и практически немагнитным. Однако и среди магнетиков следует различать проводящие, полупроводящие и практически непроводящие, что определяет частотный диапазон их применения.

Проводниковые называют материалы, основным электрическим свойствам которых является сильно выраженная электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре.

Полупроводниковыми называют материалы, являющиеся по удель­ной проводимости промежуточными между проводниковыми и диэлект­рическими материалами и отличи­тельным свойством которых яв­ляется сильная зависимость удель­ной проводимости от концентрации и вида примесей или различных де­фектов, а также в большинстве слу­чаев от внешних энергетических воздействий (температуры, осве­щенности и т. п.).

Диэлектрическими называют материалы, основным электриче­ским свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводи­мость и чем слабее у него выраже­ны замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением теплоты.

При применении диэлектриков - одного из наиболее обширных классов электротехнических материалов - довольно четко определи­лась необходимость использования как пассивных, так и активных свойств этих материалов.

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, ма­териалы для излучателей и затворов в лазерной технике, электреты и др.

Условно к проводникам относят материалы с удельным электри­ческим сопротивлением ρ < 10 -5 Ом*м, а к диэлектрикам материа­лы, у которых ρ > 10 8 Ом*м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10 -8 Ом м, а лучших диэлектриков превосходить 10 16 Ом-м. Удельное сопротив­ление полупроводников в зависимости от строения и состава материа­лов, а также от условий их эксплуатации может изменяться в пределах
10 -5 -10 8 Ом м. Хорошими проводниками электрического тока яв­ляются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ сущест­вуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полу­проводники при низких температурах ведут себя подобно диэлектри­кам. В то же время диэлектрики при сильном нагревании могут прояв­лять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков – возбужденным.

Электрические характеристики позволяют оценить свойства материалов при воздействии на него электрического поля. Основное свойство электротехнических материалов по отношению к электрическому полю – электропроводность.

Электропроводность – это свойство материала проводить электрический ток под действием постоянного (не изменяющегося во времени) электрического напряжения.

    Удельное электрическое сопротивление – это сопротивление материала длинной 1 м и поперечным сечением 1 м 2 .

где γ – удельная проводимость материала , это проводимость материала длинной 1м и поперечным сечением 1м 2 , 1/Ом∙м;

q – величина заряда носителя (заряд электрона 1,6·10 -19), Кл;

n – количество носителей заряда в единице объёма;

µ – подвижность носителя заряда.

Чем больше значение ρ, тем меньше электропроводность материала.

Проводники ρ=10 -8 ÷10 -6 .

Полупроводники ρ=10 -6 ÷10 8 .

Диэлектрики ρ=10 8 ÷10 18 .

Сопротивление проводника – это конструктивная характеристика проводника, т.к. зависит от размеров и проводниковых свойств материала.

где ρ – удельное сопротивление материала, Ом∙м;

l – длина проводника, м;

S – площадь поперечного сечения проводника, м 2 .

    Температурный коэффициент удельного сопротивления – показывает, на сколько изменится сопротивление материала в 1 Ом при нагревании его на 1 0 С.

При линейном изменении удельного сопротивления в узком интервале температур

где ρ – удельное сопротивление материала при температуре ;

ρ 0 – удельное сопротивление материала при начальной

температуре t 0 , обычно принимается 20 0 С.

Если заменить удельное сопротивление на сопротивление

Чем больше значение α, тем в большей степени изменяется сопротивление проводника при изменении температуры.

Проводники α>0 с увеличением температуры удельное сопротивление материала увеличивается.

Полупроводники и диэлектрики α<0 с увеличением температуры удельное сопротивление материала уменьшается.

Электрические свойства и характеристики материалов (для диэлектриков)

Основным свойством диэлектрических материалов является способность поляризоваться в электрическом поле.

Поляризация – это свойство материала, состоящие в ограниченном смещении или ориентации связанных зарядов при воздействии электрического поля.

    Диэлектрическая проницаемость (относительная) – показывает, во сколько раз больше ослабевает внешнее электрическое поле в данном материале, чем в вакууме (показывает слепень поляризации).

где ε а – абсолютная диэлектрическая проницаемость, учитывает влияние материала на электрическое поле, Ф/м;

ε 0 – абсолютная диэлектрическая проницаемость вакуума, 8,85∙10 -12 Ф/м.

Чем больше значение ε, тем сильнее поляризуется диэлектрик.

Вакуум ε=0.

Газообразные диэлектрики в основном ε≥1.

Жидкие и твёрдые диэлектрики ε>>1.

    Тангенс угла диэлектрических потерь.

При воздействии электрического поля на любое вещество часть электрической энергии превращается в тепловую и рассеивается. Рассеянная часть электрической энергии диэлектриком называется диэлектрическими потерями . Причём потери энергии на переменном напряжении будут во много раз больше потерь на постоянном напряжении.

При постоянном напряжении потери числено равны активной мощности

где U – напряжение, приложенное к диэлектрику, В;

I – ток проводимости через диэлектрик, А.

При переменном напряжении

где U – переменное напряжение, приложенное к диэлектрику, В;

f – частота тока, Гц;

С – ёмкость диэлектрика, Ф.

δ – угол диэлектрических потерь, дополняющий до 90 0 угол сдвига фаз φ между током и напряжением в емкостной цепи.

Чем больше значение tg δ, тем больше потери в диэлектрике и тем больше нагрев диэлектрика в электрическом поле заданной частоты и напряжения.

Газообразные диэлектрики tg δ=10 -6 ÷10 -5 .

Жидкие и твёрдые диэлектрики: высшего класса tg δ=(2÷6)∙10 -4 ,

остальные tg δ=0,002÷0,05.

    Напряжённость пробоя (электрическая прочность) – это напряжённость, однородного электрического поля при которой происходит пробой диэлектрика (становится проводником).

где U пр – пробивное напряжение, при котором происходит пробой, МВ;

d – толщина диэлектрика в месте пробоя, м.

Чем больше значение Е пр, тем лучше электроизоляционные свойства.

При выборе изоляции необходимо учитывать напряжение, на которое диэлектрик включается и должен обеспечиваться запас прочности (коэффициент прочности)

где Е р – рабочая напряжённость, МВ/м.