Винтовой компрессор: принцип работы, ремонт. Как подобрать надежный винтовой компрессор их виды и устройство

  • 19.07.2018

Устройство винтового компрессора

В данной статье речь пойдет об устройстве винтовых компрессоров, интерес к которым в последние годы значительно вырос. Это и понятно винтовой компрессор обладает целым рядом преимуществ по сравнению с поршневыми или центробежными компрессорами, традиционно использовавшимися ранее на российских заводах.

Напомним еще раз кратко основные достоинства винтовых компрессоров:

  • высокая надежность;
  • длительный ресурс работы;
  • возможность непрерывного круглосуточного функционирования;
  • простота монтажа и подключения;
  • сравнительно небольшие эксплуатационные затраты;
  • наличие системы автоматического управления;
  • низкий уровень шума;
  • высокая чистота получаемого сжатого воздуха;
  • низкий уровень энергозатрат на куб. метр произведенного воздуха.

Как же устроен винтовой компрессор?

Рассмотрим наиболее распространенный вариант компоновки, представленный на рис. 1, 2.

Рис. 1,2 Устройство винтового компрессора

Воздух через всасывающий клапан (2) и воздушный фильтр (1) поступает в винтовую пару (3), которая является "сердцем" компрессора. Здесь он смешивается с маслом, циркулирующим по замкнутому контуру, и образовавшаяся воздушно-масляная смесь нагнетается с помощью винтового блока в пневмосистему. Разделение масла и воздуха происходит в сепараторе (8,9). Очищенный от масла воздух через охлаждающий радиатор (13) поступает на выход компрессора, а масло возвращается в винтовую пару. В зависимости от температуры оно проходит либо по малому кругу, либо по большому, через масляный радиатор (12). Регулировка осуществляется с помощью термостата (11). Винтовая пара приводится в движение электродвигателем (6), а автоматическое включение и выключение компрессора jсуществляется с помощью реле давления (16).

А теперь более подробно остановимся на составных частях компрессора, их назначении и устройстве.

Основой винтового компрессора является винтовая группа, ее конструкция хорошо видно на рис.3.

Рис. 3 Винтовой блок в разрезе

Рабочий элемент винтовой группы - это винтовая пара, состоящая из двух взаимносцепленных "червячных" роторов. Обычно, ведущий ротор выполнен как винт с четырехзаходной резьбой (витками), а ведомый с шестью (рис. 4).

Рис. 4 Схема работы винтового блока

Такое передаточное число считается оптимальным и сделано для того, чтобы уменьшить нагрузку на ведущий винт. Объем сжатия образуется между витками винтовой группы и корпусом (выделено жирной линией). Полный рабочий цикл сжатия осуществляется за один оборот ведущего винта. Из всего сказанного следует, что данная конструкция может работать только при условии очень точного прецизионного исполнения всех частей рабочего элемента (корпуса и двух взаимно подогнанных роторов).

Такое устройство принципиально отличается от поршневого компрессора, для которого характерно возвратно-поступательное движение поршня в цилиндре, приводящее к повышенному нагреву и возникновению сильных вибраций. Именно поэтому использование промышленных поршневых компрессоров требует закладки массивного фундамента для компенсации вибраций и применения водяного охлаждения, то есть организации системы оборотного водоснабжения с громоздкими градирнями.

Особо следует остановиться на роли масла в винтовом компрессоре, которое выполняет сразу несколько функций:

  • создание масляной пленки и обеспечение зазора между роторами винтовой группы;
  • транспортировка воздуха;
  • смазка подшипников рабочего элемента;
  • отвод тепла.

Для обеспечения температурного режима, масло, циркулирующее в компрессоре, прокачивается через охлаждающий радиатор (12). Дело в том, что при очень высоких температурах, выше 110°С, оно теряет свою плотность, а это грозит заклиниванием роторов винтовой пары. В то же время, при низких температурах масло обладает излишней вязкостью, а, кроме того, холодная воздушно-масляная смесь может привести к образованию конденсата, что ухудшает качество воздуха на выходе компрессора. Для того чтобы температура масла как можно быстрее достигла рабочего значения, используется термостат (11). То есть, существует малый круг циркуляции масла, когда оно, минуя радиатор, возвращается в систему. По мере нагрева, включается большой круг циркуляции через радиатор. Открытие термостата наступает при достижении температуры масла около 70°С. Воздушно-масляный радиатор (12,13) является двухсекционным, комбинированным. Кроме охлаждения масла он служит и для охлаждения воздуха. Благодаря этому разница между температурой окружающей среды и температурой воздуха на выходе компрессора не превышает 7°С. Это позволяет обеспечить дальнейшую эффективную работу осушителя и всей системы подготовки воздуха.

Радиатор охлаждается проходящим через него потоком воздуха, который нагнетается внутрь компрессора вентилятором (14), установленным на валу электродвигателя (6). Все панели компрессора во время работы должны быть обязательно закрыты, именно так задается максимально эффективное направление движения воздуха, обеспечивающего отбор тепла, вырабатываемого во время сжатия. Возможно вторичное использование нагретого воздуха, например, для обогрева помещений в зимнее время. Из сказанного выше следует, что винтовая пара может работать только при условии, если она постоянно находится в воздушно-масляной смеси.

Возникающая при этом проблема отделения воздуха от масла решается с помощью следующих элементов

  • маслосборный ресивер (8);
  • маслоотделительный фильтр (9);
  • устройство возврата масла.

Система отделения масла имеет три ступени очистки, что обеспечивает ее максимальную эффективность. В результате остаточное содержание масла в сжатом воздухе не превышает 3 мг/куб. м. На первом этапе отделение происходит за счет центробежных сил и силы тяжести. Воздушно-масляная смесь поступает из винтовой группы по соединительному шлангу в ресивер маслоотделителя (8). Ударяясь о стенки сосуда, более тяжелые частицы масла под воздействием силы тяжести и центробежных сил опускаются на дно. Для второй ступени механической очистки используется разделительная перегородка, расположенная в средине ресивера выше входного отверстия. Воздушно-масляная смесь, поднимаясь, проходит через отверстия в перегородке, на которой так же оседают частицы масла. Оконечным элементом внутренней очистки является фильтр маслоотделителя (9), представляющий собой обычный керамический фильтрующий элемент. Масло, которое задерживается фильтром, скапливается в специальном углублении и возвращается в винтовой блок через соединительную трубку. Для визуального контроля возврата масла в систему на прозрачной трубке сделано утолщение цилиндрической формы (19), Рис. 5. Важность этого элемента заключается в том, что он позволяет проверить эффективность работы маслоотделяющего фильтра, которая снижается при увеличении количества масла.

Маслосборный ресивер (8) снабжен предохранительным клапаном (10), который защищает его от превышения давления.

Очистка масла от загрязнения осуществляется с помощью масляного фильтра (7). Он предотвращает попадание твердых частиц на рабочие поверхности винтов и подшипников.

Перейдем к рассмотрению других функциональных элементов компрессора (Рис. 5).

Рис. 5 Функциональная схема винтового компрессора

Воздушный фильтр (1), устанавливаемый на входе компрессора, предназначен для очистки поступающего воздуха. Он защищает винтовую пару от попадания посторонних частиц и, таким образом, обеспечивает надежность и долговечность работы компрессора. Преждевременное засорение воздушного фильтра может быть причиной перегрева электродвигателя и включения системы аварийной остановки. Всасывающий клапан (2) служит для предотвращения выброса наружу сжатого воздуха и масла в момент остановки компрессора. Фактически это обычный подпружиненный пневматический клапан, который постоянно открыт при всасывании воздуха. Управление работой всасывающего клапана осуществляется с помощью устройства пневмоавтоматики - электропневматического клапана холостого хода (15). Задача этого устройства заключается в том, чтобы до момента остановки электродвигателя снизить давление внутри компрессора до 2,5 бар. Это позволяет избежать выбросов масла, обусловленных инерционностью всасывающего клапана и неприятных гидравлических ударов, возникающих при внезапной остановке компрессора. Клапан открывает канал, соединяющий через дроссельное отверстие область маслоотделительного фильтра с областью всасывания винтовой пары. Эффективное сечение дроссельного отверстия регулируется на заводе изготовителе так, чтобы в течение заданного времени давление в области всасывающего клапана снизилось до 2,5 Бар. При таком остаточном давлении в системе всасывающий клапан успеет закрыться и приводной двигатель можно выключить.

Еще одним устройством, обеспечивающим работу компрессора в режиме холостого хода, является клапан минимального давления (20). Он закрыт, пока давление внутри компрессора остается в пределах не более 4-5 бар (отсюда и название). Одновременно он выполняет роль обратного клапана, отделяя компрессор от пневмолинии при его остановке или работе на холостом ходу.

Реле давления (16) обеспечивает автоматический режим работы компрессора. При достижении давления в сети заданного максимального значения (например, 10 бар) оно подает сигнал на клапан холостого хода, который срабатывает и переводит компрессор на холостой ход. Когда давление падает до минимального (например, 8 бар), клапан холостого хода по сигналу с реле закрывается, и компрессор вновь начинает нагнетать воздух в пневмолинию. Если же компрессор уже перешел в режим ожидания, то подается сигнал на пуск электродвигателя.

Привод в движение винтовой группы осуществляется электродвигателем (6), посредством ременной передачи (4). Передаточное число, а, следовательно, и скорость вращения винтового блока задается размерами шкивов (5). Чем выше максимальное давление компрессора, тем ниже возможная скорость вращения винтовой группы, тем меньше производительность компрессора.

Система аварийной защиты состоит из двух независимых устройств.

Датчик термозащиты установлен на электродвигателе. При достижении предельных значений потребляемого тока реле срабатывает и двигатель отключается от сети.

Другой датчик установлен в винтовой паре в области выходного патрубка (18). Сигнал с датчика температуры поступает на вход аналого-цифрового преобразователя и выдается на устройство индикации. Если температура на выходе винтовой пары превысит значение 105°С, защита срабатывает и двигатель выключается.

Работу винтового компрессора условно можно разделить на следующие режимы:

Пусковой режим.

Необходим для минимизации нагрузки на сеть в момент пуска компрессора. После нажатия кнопки "START" электродвигатель включается по схеме "звезда", чем обеспечивается минимальная нагрузка на сеть в момент включения и запускается таймер (2 секунды). Спустя установленное время (2 секунды), по команде с таймера, двигатель переключается в рабочий режим, т.е. на схему "треугольник".

Рабочий режим.

В этом режиме начинается рост давления в системе. Манометр (17), расположенный на лицевой панели показывает давление внутри компрессора, то есть в области между всасывающим клапаном и клапаном минимального давления. Давление в линии можно контролировать по манометру расположенному на ресивере. При первом включении давление внутри компрессора и в линии практически одинаково. При достижении максимального давления, например 10 бар, срабатывает реле давления, и компрессор переходит из рабочего режима в режим холостого хода.

Режим холостого хода.

В отличие от поршневого, винтовой компрессор может работать в режиме холостого хода, длительность которого устанавливается таймером. В этом режиме двигатель компрессора и винтовая группа вращаются, прогоняя воздух по внутреннему контуру компрессора, обеспечивая, таким образом, его эффективное охлаждение. Режим холостого хода является переходным и служит для перевода системы в режим ожидания или полного выключения STOP.
По команде с реле давления включается пневмоэлектрический клапан холостого хода, и запускается реле времени (настроенное, например, на 4 минуты). Клапан холостого хода открывает перепускной канал между всасывающим клапаном и маслоотделительным фильтром. С этого момента давление в линии отличается от давления внутри компрессора, то есть в области между всасывающим клапаном и клапаном минимального давления оно начинает падать. Отверстие перепускного канала регулируется производителем таким образом, чтобы за установленное время (4 минуты) давление упало до минимальной величины - 2.5 бар. В этом случае выключение двигателя происходит безболезненно без выброса масла через всасывающий клапан в область воздушного фильтра. По истечении установленного времени (4 минуты) по команде с реле времени выключается электродвигатель и система переходит в режим ожидания. Если же давление в линии падает до минимального (например, 8 бар) раньше, чем срабатывает реле времени, то компрессор вновь переходит в рабочий режим.

Режим ожидания.

Данный режим длится до тех пор, пока давление в рабочей магистрали не станет меньше минимального (8 бар). В режиме ожидания система может находиться произвольное время, которое зависит от расхода воздуха в системе. При падении давления в системе ниже минимального срабатывает реле давления, и система вновь переходит в пусковой, а затем и в рабочий режим. Давление внутри компрессора быстро достигает значения давления в магистрали, дальнейший его рост происходит синхронно до перехода в режим холостого хода.

Режим "STOP"

Режим "STOP" используется для штатного выключения системы. Если система в момент нажатия кнопки "STOP" находилась в рабочем режиме, то она принудительно переводится в режим холостого хода, а затем выключается.

Режим "ALARM-STOP"

В этот режим система может быть переведена нажатием кнопки экстренного выключения, расположенной на панели управления. Используется в случае срочной необходимости выключить электродвигатель. По этой команде электродвигатель отключается без перехода в режим холостого хода.

Как мы видим, ничего сложного в устройстве винтового компрессора нет. Вместе с тем его конструкция отличается надежностью и рассчитана на длительную бесперебойную работу. В данной статье мы рассмотрели только один наиболее общий и часто встречающийся вариант. Он дает достаточно полное представление о работе компрессора, однако следует учитывать, что каждый производитель может вносить дополнительные изменения и дополнения в конструкцию выпускаемого им изделия. Безусловно, надежность и срок службы компрессора зависит от многих факторов: соблюдения условий эксплуатации, своевременного выполнения регламентных работ по техобслуживанию, а, главное, от качества всех компонентов и, в первую очередь, винтового блока, который является самым прецизионным и дорогостоящим элементом системы. Мы рекомендуем покупать оборудование только известных давно присутствующих на российском рынке компаний, имеющих здесь свое представительство и сервисный центр. Только в этом случае вы можете надолго забыть о проблемах связанных с обеспечением воздухом вашего предприятия.

В последнее время значительно возрос интерес к использованию на производстве винтовых компрессоров. И в этом нет ничего странного, ведь винтовой компрессор имеет неоспоримые преимущества, перед другими видами компрессоров – поршневыми и центробежными, которые ранее использовались на всех производствах, да и сейчас по старинке все еще работают на большинстве российских заводов.

Главными преимуществами винтовых компрессоров является:

  • увеличенный ресурс работы
  • простота в монтаже и обслуживании
  • более низкий уровень шума
  • высокая надежность
  • возможность режима непрерывной работы
  • относительно небольшие эксплуатационные затраты
  • предусмотрена система автоматического управления компрессором
  • экономичный режим работы, в перерасчете на м3 произведенного воздуха
  • получаемая высокая чистота сжатого воздуха

Устройство и принцип работы винтового компрессора достаточно прост.



Воздушный фильтр (1), через который проходит атмосферный воздух, очищается в нем, и сквозь регулятор всасывания поступает в винтовой блок (2).

Самая главная и, соответственно, дорогостоящая часть любого винтового компрессора – винтовой блок. Непосредственно в нем происходит сжатие воздуха, до необходимого для конкретных целей давления. Это происходит благодаря тому, что открытые полости, ответно зацепленных зубцами, вращающихся в противоположные стороны ведущего и ведомого червячных роторов и сам корпус винтового блока образуют объем. Именно в этот объем, благодаря возникшему в нем разряжению, поступает воздух. Вследствие вращения роторов, закрываются открытые полости, уменьшается объем между ними, и, как следствие, давление нагнетания растет. В этот момент, для предотвращения нежеланного контакта между металлическими поверхностями роторов, а также смазки подшипников и отвода образовавшегося в процессе сжатия тепла, производится тщательно рассчитанный, дозированный впрыск масла. Далее, полученная воздушно - масляная смесь попадает в бак сепаратора (3). Затем, при прохождении через воздушно-маслянный сепаратор (4), происходит ее разделение на масло и воздух.

Отфильтрованный от масла сжатый воздух, проходит воздушный радиатор (9) и попадает на выход компрессора.

Отделенное в сепараторе масло, проходит через термостат (7) , и далее поступает в масляный радиатор (8). Затем, в масляном фильтре (6) оно очищается от всевозможных твердых частиц и снова попадает в винтовой блок (2).

При помощи электродвигателя происходит привод винтового блока. Для обеспечения охлаждающего воздушного потока внутри компрессора, на валу электродвигателя закреплен вентилятор. Также, в некоторых моделях винтовых компрессоров, установлены отдельные вентиляторы с собственными электродвигателями. Клапан минимального давления (5) обеспечивает работу винтового компрессора в режиме холостого хода. Он одновременно исполняет роль обратного клапана, отгораживая тем самым компрессор от пневматической магистрали.

Такая реализация принципиально отличается от устройства поршневого компрессора, в основе которого заложены возвратно поступательные движения поршня в цилиндре, следствием которого является повышенная вибрация компрессора и сильный нагрев. В результате этого при использовании в промышленности поршневых компрессоров возникает необходимость закладки мощного фундамента, который будет способен компенсировать появившиеся вибрации. Также, нужно применять водяное охлаждение, для обустройства которого понадобится громоздкая система оборотного водоснабжения.

О роли масла в винтовом компрессоре, выполняющего сразу несколько функций, следует упомянуть отдельно. Его основные функции:

  • образование масляной пленки, которая обеспечивает необходимый зазор между ротором и винтовой группой
  • транспортировка воздуха
  • смазка подшипников рабочих элементов
  • охлаждение, путем отвода тепла

Винтовой компрессор предназначен для понижения давления с помощью роторов. Они относятся к ротационным компрессорным устройствам. Несмотря на то что оборудование появилось в середине 30-х годов, в настоящее время оно является одним из самых популярным. Его главные преимущества - малые габариты, работа в автоматическом режиме, экономичность и т. д. При его монтаже не используют специальный фундамент, так как уровень вибрации имеет низкие показатели по сравнению с иными моделями. Воздушно-винтовой компрессор вытеснил аппараты других видов.

Он способен до 15 атмосфер. При этом производительность достигает 100 м³/мин.

Достоинства

По сравнению с другими аппаратами, винтовой компрессор имеет ряд преимуществ:

  • Низкий который непосредственно влияет на качество подаваемого воздуха. Его в очищенном виде используют для различного пневматического оборудования. Причём установка дополнительных фильтров не требуется.
  • Низкий и вибрации. Как говорилось ранее, благодаря небольшим размерам монтаж выполняется без специального шумопоглощающего фундамента. Такая особенность помогает оснащать воздухом различные переносные устройства.
  • Винтовой компрессор оснащён воздушным охлаждением. Оно помогает не только охлаждать разные элементы, но и за счёт вторично выработанного тепла отапливать помещения.
  • Способность автоматического функционирования, простота монтажа и эксплуатации. Оборудование управляется с помощью специальных автоматических систем.

Недостатки

Среди отрицательных сторон можно выделить высокую стоимость и сложность конструкции. Кроме того, аппарат требует дополнительного оснащения при отводе горячего воздуха, которое необходимо для отопления помещения. Запрещено использовать винтовые компрессоры в среде с агрессивными газами.

Устройство винтового компрессора

Самое простое оборудование имеет такие элементы:

  1. Фильтр, что служит для очистки воздуха, который поступает в рабочий элемент. Как правило, он состоит из двух частей. Первая устанавливается на корпусе, вторая — перед клапаном.
  2. Всасывающий клапан. При остановке компрессора он служит для того, чтобы масло и воздух не удалялись из агрегата. Он управляется с помощью пневматики. По внешнему виду ничем не отличается от обычного пружинного клапана.
  3. Основная часть — винтовой блок. Здесь располагается два соединённых ротора, изготовленных из высококачественной стали. Стоимость такого элемента довольно велика. В её конструкции предусмотрен термозащитный контроллер, который служит для остановки работы двигателя при достижении температуры 105º градусов.
  4. Привод. Он состоит из двух шкивов, установленных в двигателе и роторе, служит для увеличения или уменьшения скорости вращения. Чем она выше, тем больше воздуха будет сжиматься. Однако рабочее давление при этом снижается.
  5. Скорость оборотов ротора зависит от шкивов.
  6. Мотор. Вращательные движения осуществляются за счёт ременной передачи. В его комплектацию входит термозащитный датчик, отключающий двигатель при достижении высоких температур. Кроме того, он предотвращает возникновение различных аварийных ситуаций.
  7. Масляный фильтр. Очищает масло для винтовых компрессоров перед тем, как оно поступает в двигатель.
  8. Маслоотделитель. Служит для отделения воздуха от масла за счёт центробежной силы.
  9. Маслоотделительный фильтр. Очищает смазку после отделения от воздуха.
  10. Срабатывает, когда давление в маслоотделителе превышает допустимые нормы.
  11. Термостат. Регулирует температуру масляного состава.
  12. Маслоохладитель. После отделения от воздуха, масло поступает в специальную ёмкость, где происходит его охлаждение.
  13. Воздухоохладитель. Чтобы подать воздух в помещении, снижают его температуру до 20º градусов.
  14. Для нагнетания вышесказанной составляющей служит вентилятор.
  15. Реле. Обеспечивает автоматическую работу агрегата, исполняет функцию электронной системы управления.
  16. Для контроля давления внутри агрегата устанавливается манометр.
  17. Клапан минимального давления. Он находится в закрытом положении до тех пор, пока давление не превысит отметку в 4 бара.

Винтовой компрессор помещён в корпус. Он изготавливается из высококачественной стали. Его поверхность обрабатывается специальным веществом, которое не подвергается воздействиям масла и других веществ.

Винтовой компрессор: принцип работы

Воздух из атмосферы попадает через клапан в роторный механизм, перед этим очищаясь в фильтре. Далее происходит смешивание с маслом. Затем оно поступает в специальную ёмкость для сжатия, при этом выполняет следующие цели:

  • устраняет зазоры между винтами и корпусом, благодаря чему появление протечек сводится к минимуму;
  • делает так, чтобы оба ротора не касались друг друга;
  • отводит тепло, которое вырабатывается в процессе сжатия.

Сжатая смесь поступает в маслоотделитель, где происходит разделение на составляющие.

Отделившееся масло очищается в фильтре и обратно поступает в блок, при необходимости его охлаждают. Воздух также поступает в воздухоохладитель, а затем подаётся из компрессора.

Какие режимы работы существуют?

Винтовой компрессор, принцип работы которого описан в предыдущем пункте, может функционировать в таких режимах:

  • Start. При этом режиме винтовой компрессор запускается и включается в электросеть по схеме «звезда». Через несколько секунд он переходит на схему «треугольник».
  • Рабочий режим. Давление в компрессоре начинает возрастать. При достижении определённой отметки включается холостой ход агрегата.
  • Холостой ход. При этом режиме осуществляется вращение ротора, во время которого происходит перемещение газовой среды, необходимой для охлаждения воздуха. Он позволяет перевести компрессор в режим ожидания перед выключением агрегата.
  • Режим ожидания. Винтовой компрессор будет исполнять эту функцию до тех пор, пока показатель давления не опустится до минимального значения.
  • Stop. При включении этого режима компрессорное оборудование переходит на холостой ход, а затем полностью выключается.
  • Alarm-stop. Он используется в том случае, когда необходимо экстренно вывести из строя воздушно винтовой компрессор.

Ремонт устройства

При хорошем обслуживании элемент может функционировать более 50 тыс. часов. Как и любое устройство, со временем необходимо осуществлять ремонт винтовых компрессоров. Это оборудование содержит сложные механизмы и различные комплектации.

Довольно часто в таком аппарате выходит из строя электроника. имеют сложные электронные системы, которые могут перегорать. Поэтому необходимо произвести его ремонт, а в более сложных случаях - замену. Выполнить это могут высококвалифицированные специалисты. Стоимость блока управления довольно велика. Если в ней есть осушитель, ремонт винтовых компрессоров будет ещё более затратным, так как оборудование является сложным механизмом.

Стоимость

Как говорилось ранее, винтовые компрессоры представлены на рынке в очень широком ассортименте.

Стоимость зависит от мощности оборудования, а также технических характеристик. Его ценовой диапазон колеблется от 250 до 700 тыс. рублей.

В этой статье я расскажу о некоторых ключевых моментах про винтовые компрессоры.

Также отвечу на следующие вопросы:

  • Винтовой компрессор - что это за механизм?
  • Какова конструкция (или устройство) винтового компрессора?
  • В чем заключается принцип работы винтового компрессора?

Винтовой компрессор - что это за "Зверь"?

Винтовые компрессоры относятся к классу объемных компрессоров. Т.е. сжатие воздуха или другого газа происходит за счет изменения объема. К такому типу компрессоров относятся также поршневые, мембранные компрессоры, воздуходувки и т.д.

Если говорить простыми словами, то винтовой компрессор - это устройство, которое преобразует электроэнергию через электродвигатель в энергию воздуха/газа.

Сжатый воздух/газ является одним из наиболее распространенных носителей энергии. С помощью сжатого воздуха/газа приводятся в действие различные клапана, пневмо-цилиндры и другие исполнительные механизмы.

Когда изобрели винтовой компрессор?

Патент на изобретение винтового компрессора был выдан в 1934 году шведскому инженеру Элиоту Лисхольму. С тех пор конструкция компрессора неоднократно менялась и совершенствовалась с целью улучшения его характеристик. Но сам принцип действия остался неизменным.

Схема винтового маслозаполненного компрессора.

Схематично устройство винтового маслозаполненного компрессора показано на рисунке ниже.

Синим цветом обозначено направление потока воздуха внутри компрессора.

Желтым цветом обозначен поток масла внутри компрессора.

Цифрами на рисунке обозначены основные составные части винтового компрессора:

1 – воздушный фильтр 10 - сливной кран

2 – всасывающий клапан 11 - масляный фильтр

3 – винтовой блок 12 - термостат

4 – приводная муфта 13 - масляный радиатор

5 – электродвигатель 14 - воздушный радиатор

6 – клапан минимального давления 15 - вентилятор

7 – сепаратор 16 - датчик температуры

8 – разгрузочный клапан 17 - датчик давления

9 – масляный резервуар 18 - запорный кран

При описании принципа работы винтового компрессора принято разделять понятия « воздушный поток » и « масляный контур ».

Рассмотрим их подробнее.

Воздушный поток.

При работе компрессора атмосферный воздух через фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3 , в котором происходит сжатие воздуха вращающимися роторами (винтами).

Винтовой блок является «сердцем» компрессора. От качества его изготовления зависит надежность и долговечность всего компрессора.

Как правило, моторесурс винтового блока до капитального ремонта составляет 36 000 - 40 000 моточасов. Капитальный ремонт заключается в замене подшипников, уплотнений вала и выставлении зазоров внутри винтового блока.

В нашей практике встречались винтовые компрессоры, которые работали более 70 000 моточасов без капитального ремонта. Но это, скорее всего, исключение из правил.

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке:

Воздух попадает в полость сжатия, которая образуется двумя винтами и корпусом винтового блока. При вращении винтового блока полость "двигается" и уменьшается в объеме. Таким образом происходит сжатие воздуха или другого газа.

Вращение роторов обеспечивается приводом, состоящим из электродвигателя 5 и приводной муфты 4 (в некоторых моделях компрессоров вместо муфты применяется ременная передача или шестеренчатый привод).

Наличие всасывающего клапана 2 отличает винтовые компрессоры от поршневых. Он позволяет компрессору при вращении роторов находиться в двух рабочих режимах – (клапан открыт, сжатый воздух подается потребителю) и «холостой ход» (клапан закрыт, подача сжатого воздуха потребителю отсутствует).

Режим холостого хода играет значительную роль в повышении надежности винтовых компрессоров. Он позволяет сократить количество пусков электродвигателя. Частые пуски двигателя являются «стрессовыми» как для самого двигателя, так и для системы энергоснабжения предприятия.

Как правило, всасывающий клапан устанавливается непосредственно на горловине винтового блока:

Смесь сжатого воздуха и компрессорного масла попадает в масляный резервуар 9 , в котором происходит первичное отделение сжатого воздуха от масла.

Роль масла очень важна для работы винтового компрессора. Оно отводит тепло, образующееся при сжатии воздуха в винтовом блоке. Кроме того, масло образует пленку вокруг вращающихся винтов, уплотняя «рабочие камеры». Также масло предотвращает соприкосновение винтов и их механический износ.

Остатки масла удаляются из сжатого воздуха в сепараторе 7 . В зависимости от производительности компрессора, сепаратор может быть смонтирован отдельно от масляного резервуара 9 , или находиться внутри него:

Далее сжатый воздух через клапан минимального давления 6 попадает в воздушный радиатор 14 , в котором происходит его охлаждение потоком воздуха, создаваемым вращающимся вентилятором 15 .

Производительность вентилятора рассчитывается таким образом, чтобы температура сжатого воздуха на выходе компрессора не превышала температуру окружающей среды более чем на 10 °С.

Фотография вентилятора и радиатора в верхней части компрессора.

Следует отметить, что в применяются винтовые компрессоры с воздушным или водяным охлаждением. Отдельно о плюсах и минусах типа охлаждения я расскажу в отдельной статье в разделе "Полезные советы".

На фотографии ниже изображена система воздушного охлаждения:

Клапан минимального давления 6 представляет собой так называемый невозвратный (или обратный) клапан, снабженный пружиной строго определенной жесткости. Он играет двойную роль:

  • не позволяет сжатому воздуху из пневмосети предприятия проникнуть в обратно в компрессор, когда он остановлен;
  • благодаря наличию пружины, давление в масляном резервуаре 9 при работе компрессора на «пустую» пневмосеть поддерживается на необходимом для нормальной циркуляции масла уровне – около 4,5 бар .

Потребителю сжатый воздух подается через запорный кран 18 .

Масляный контур.

Масло, отделенное от сжатого воздуха в масляном резервуаре 9, находится под давлением. Клапан минимального давления 6 поддерживает это давление на уровне около 4.5 бар при работе в режиме «нагрузка».

В зависимости от температуры масло может циркулировать либо только по «малому» контуру (масляный резервуар 9 → термостат 12 → масляный фильтр 11 → винтовой блок 3 ), либо по «большому» контуру (масляный резервуар 9 → термостат 12 → масляный радиатор 13 → масляный фильтр 11 → винтовой блок 3 ), либо по обоим контурам одновременно.

Переключение потоков осуществляется термостатом 12 . Наличие двух масляных контуров обеспечивает быстрый выход компрессора на рабочий температурный режим после запуска и поддержание этого режима при дальнейшей работе.

В современных винтовых компрессорах термостат, как правило, вмонтирован в винтовой блок. Это позволяет избежать применения дополнительных трубопроводов:

Температурный режим очень важен для нормальной работы винтового компрессора.

Слишком низкая температура приведет к выпадению конденсата из сжатого воздуха и смешиванию его с маслом. Это отрицательно скажется на сроке службы винтового блока.

Высокая же температура значительно снижает срок службы самого масла. Потребуется более частая его замена, т.е. дополнительные финансовые расходы.

Система управления.

Показанные на схеме разгрузочный клапан 8 , датчик температуры 16 и датчик давления 17 относятся к системе управления работой компрессора.

Датчик температуры 16 выполняет защитную функцию. По его сигналу происходит аварийное отключение компрессора при перегреве масла.

По сигналу датчика давления 17 происходит переключение режимов работы компрессора («нагрузка» – «холостой ход»). Таким образом, давление в пневмосети потребителя поддерживается в установленных пределах.

Разгрузочный клапан 8 служит для сброса давления из масляного резервуара после остановки компрессора. Благодаря этому облегчается последующий запуск компрессора, так как отсутствует «противодавление» (дополнительная нагрузка на вал электродвигателя).

Сама же система управления работой компрессора может быть реализована различными способами – от простейшей электромеханической до сложной, на базе специализированного контроллера с текстовым или графическим интерфейсом:

В заключение отметим, что из этого достаточно поверхностного описания принципа работы винтовых компрессоров можно выделить их основные преимущества, позволившие винтовым компрессорам практически повсеместно вытеснить поршневые в сегменте низких (до 15 бар) рабочих давлений:

  • низкий уровень шума и практически полное отсутствие вибраций;
  • непрерывная, без пульсаций, подача сжатого воздуха;
  • возможность длительной непрерывной работы (наличие режима «холостой ход» позволяет значительно сократить количество пусков электродвигателя, сопряженных с «бросками» тока и напряжения в электросети предприятия);
  • эффективная система маслоотделения, обеспечивающая высокое качество сжатого воздуха;
  • высокий КПД;
  • простота обслуживания.

Комментариев нет

В данной статье затронем вопрос о принципе работы винтового компрессора.

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

Типичная конструкция винтового компрессора показана на рисунке ниже:

Цифрами на рисунке обозначены:

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

Рассмотрим их подробнее на примере воздушного компрессора.

Воздушный поток

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:


Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:


Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:


Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

  • холостой ход (клапан закрыт)

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

Наличие масла в винтовом блоке необходимо по ряду причин:

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.


Применение водяного охлаждения позволяет:

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

Масляный контур

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

Температура масла очень важна для длительной безотказной работы компрессора.

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.

На этом все.

Если у вас остались вопросы, то вы можете задать их в форме ниже. Мы ответим в течение 1-2 рабочих дней.

С уважением,

Константин Широких & Сергей Борисюк