Электромагнитные поля.

  • 10.10.2019

Источники электромагнитных полей (ЭМП) чрезвычайно разнообразны - это системы передачи и распределения электроэнергии (линии электропередачи - ЛЭП, трансформаторные и распределительные подстанции) и приборы, потребляющие электроэнергию (электродвигатели, электроплиты, электронагреватели, холодильники, телевизоры, видеодисплейные терминалы и др.).

К источникам, генерирующим и транслирующим электромагнитную энергию, относятся радио- и телевизионные вещательные станции, радиолокационные установки и системы радиосвязи, самые разнообразные технологические установки в промышленности, медицинские приборы и аппаратура (аппараты для диатермии и индуктотермии, УВЧ-терапии, приборы для микроволновой терапии и др.).

Работающий контингент и население может подвергаться воздействию изолированной электрической или магнитной составляющих поля или их сочетанию. В зависимости от отношения облучаемого лица к источнику облучения, принято различать несколько видов облучения - профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях. Профессиональное облучение характеризуется многообразием режимов генерации и вариантов воздействия электромагнитных полей (облучение в ближней зоне, в зоне индукции, общее и местное, сочетающееся с действием других неблагоприятных факторов производственной среды). В условиях непрофессионального облучения наиболее типичным является общее облучение, в большинстве случаев в волновой зоне.

Электромагнитные поля, генерируемые теми или иными источниками, могут воздействовать на все тело работающего человека (общее облучение) или отдельной части тела (местное облучение). При этом, облучение может носить характер изолированного (от одного источника ЭМП), сочетанного (от двух и более источников ЭМП одного частотного диапазона), смешанного (от двух и более источников ЭМП различных частотных диапазонов), а также комбинированного (в условиях одновременного воздействия ЭМП и других неблагоприятных физических факторов производственной среды) воздействия.

Электромагнитная волна - это колебательный процесс, связанный с изменяющимися в пространстве и во времени взаимосвязанными электрическими и магнитными полями.

Электромагнитное поле - это область распространения электромагнитных

Характеристика электромагнитных волн. Электромагнитное поле характеризуется частотой излучения f, измеряемой в герцах, или длиной волны X, измеряемой в метрах. Электромагнитная волна распространяется в вакууме со скоростью света (3 108 м/с), и связь между длиной и частотой электромагнитной волны определяется зависимостью

где с - скорость света.

Скорость распространения волн в воздухе близка к скорости их распространения в вакууме.

Электромагнитное поле обладает энергией, а электромагнитная волна, распространяясь в пространстве, переносит эту энергию. Электромагнитное поле имеет электрическую и магнитную составляющие (Таблица № 35).

Напряженность электрического поля Е - это характеристика электрической составляющей ЭМП, единицей измерения которой является В/м.

Напряженность магнитного поля Н (А/м) - это характеристика магнитной составляющей ЭМП.

Плотность потока энергии (ППЭ) - это энергия электромагнитной волны, переносимой электромагнитной волной в единицу времени через единичную площадь. Единицей измерения ППЭ является Вт/м.

Таблица № 35. Единицы измерения интенсивности ЭМП в Международной системе единиц (СИ)
Диапазон Название величины Обозначение единиц
Постоянное магнитное поле Магнитная индукция Напряженность поля Ампер на метр, А/м Тесла, Тл
Постоянное электрическое (электростатическое) поле Напряженность поля Потенциал Электрический заряд Вольт на метр, В/м Кулон, Кл Ампер на метр, А/м
Электромагнитное поле до 300 МГц Напряженность магнитного поля Напряженность электрического поля Ампер на метр, А/м Вольт на метр, В/м
Электромагнитное поле до 0,3-300 ГГц Плотность потока энергии Ватт на квадратный метр, Вт/м2


Для отдельных диапазонов электромагнитных излучений - ЭМИ (световой диапазон, лазерное излучение) введены другие характеристики.

Классификация электромагнитных полей. Частотный диапазон и длина электромагнитной волны позволяют классифицировать электромагнитное поле на видимый свет (световые волны), инфракрасное (тепловое) и ультрафиолетовое излучение, физическую основу которых составляют электромагнитные волны. Эти виды коротковолнового излучения оказывают на человека специфическое воздействие.

Физическую основу ионизирующего излучения также составляют электромагнитные волны очень высоких частот, обладающие высокой энергией, достаточной для того, чтобы ионизировать молекулы вещества в котором распространяется волна (Таблица № 36).

Радиочастотный диапазон электромагнитного спектра делится на четыре частотных диапазона: низкие частоты (НЧ) - менее 30 кГц, высокие частоты (ВЧ) - 30 кГц...30 МГц, ультравысокие частоты (УВЧ) - 30...300 МГц, сверхвысокие частоты (СВЧ) - 300 МГц.750 ГГц.

Особой разновидностью электромагнитных излучений (ЭМИ) является лазерное излучение (ЛИ), генерируемое в диапазоне длин волн 0,1...1000 мкм. Особенностью ЛИ является его монохроматичность (строго одна длина волны), когерентность (все источники излучения испускают волны в одной фазе), острая направленность луча (малое расхождение луча).

Условно к неионизирующим излучениям (полям) можно отнести электростатические поля (ЭСП) и магнитные поля (МП).

Электростатическое поле - это поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними.

Статическое электричество - совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках.

Магнитное поле может быть постоянным, импульсным, переменным.

В зависимости от источников образования электростатические поля могут существовать в виде собственно электростатического поля, образующегося в разного рода энергетических установках и при электротехнических процессах. В промышленности ЭСП широко используются для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов. Изготовление, испытание,

транспортировка и хранение полупроводниковых приборов и интегральных схем, шлифовка и полировка футляров радиотелевизионных приемников,

технологические процессы, связанные с использование диэлектрических

материалов, а также помещения вычислительных центров, где сосредоточена множительная вычислительная техника характеризуются образованием

электростатических полей. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам, переливании жидкостей-диэлектриков, скатывании пленки или бумаги в рулон.

Таблица № 36. Международная классификация электромагнитных волн

диапазона

Название диапазона по частот Метрическое подразделение длин волн Длина Сокращенное буквенное обозначение
1 3-30 Гц Декамегаметровые 100-10 мм Крайне низкие, КНЧ
2 30-300 Гц Мегаметровые 10-1 мм Сверхнизкие, СНЧ
3 0,3-3 кГц Г ектокилометровые 1000-100 км Инфранизкие, ИНЧ
4 от 3 до 30 кГц Мириаметровые 100-10 км Очень низкие, ОНЧ
5 от 30 до 300 кГц Километровые 10-1 км Низкие частоты, НЧ
6 от 300 до 3000 кГц Г ектометровые 1-0,1 км Средние, СЧ
7 от 3 до 30 МГц Декаметровые 100-10 м Высокие, ВЧ
8 от 30 до 300 МГц Метровые 10-1 м Очень высокие, ОВЧ
9 от 300 до 3000 МГц Дециметровые 1-0,1 м Ультравысокие, УВЧ
10 от 3 до 30 ГГц Сантиметровые 10-1 см Сверхвысокие, СВЧ
11 от 30 до 300 ГГц Миллиметровые 10-1 мм Крайне высокие, КВЧ
12 от 300 до 3000 ГГц Децимиллиметровые 1-0,1 мм Г ипервысокие, ГВЧ


Электромагниты, соленоиды, установки конденсаторного типа, литые и металлокерамические магниты сопровождаются возникновением магнитных полей.

В электромагнитных полях выделяют три зоны, которые формируются на различных расстояниях от источника электромагнитных излучений.

Зона индукции (ближняя зона) - охватывает промежуток от источника излучения до расстояния, равного примерно У2п ~ У6. В этой зоне электромагнитная волна еще не сформирована и поэтому электрическое и магнитное поля не взаимосвязаны и действуют независимо (первая зона).

Зона интерференции (промежуточная зона) - располагается на расстояниях примерно от У2п до 2лХ. В этой зоне происходит формирование ЭМВ и на человека действует электрическое и магнитное поля, а также оказывается энергетическое воздействие (вторая зона).

Волновая зона (дальня зона) - располагается на расстояниях свыше 2лХ. В этой зоне электромагнитная волна сформирована, электрическое и магнитное поля взаимосвязаны. На человека в этой зоне воздействует энергия волны (третья зона).

Действие электромагнитного поля на организм. Биологический и патофизиологический эффект воздействия электромагнитных полей на организм зависит от диапазона частот, интенсивности воздействующего фактора, продолжительности облучения, характера излучения и режима облучения. Действие ЭМП на организм зависит от закономерности распространения радиоволн в материальных средах, где поглощение энергии электромагнитной волны определяется частотой электромагнитных колебаний, электрических и магнитных свойств среды.

Как известно, ведущим показателем, характеризующим электрические свойства тканей организма, являются их диэлектрическая и магнитная проницаемость. В свою очередь, различия электрических свойств тканей (диэлектрической и магнитной проницаемости, удельного сопротивления) связаны с содержанием в них свободной и связанной воды. Все биологические ткани, по диэлектрической проницаемости, подразделяются на две группы: ткани с высоким содержанием воды - свыше 80% (кровь, мышцы, кожа, ткань мозга, ткань печени и селезенки) и ткани с относительно низким содержанием воды (жировая, костная). Коэффициент поглощения в тканях с высоким содержанием воды, при одинаковых значениях напряженности поля, в 60 раз выше, чем в тканях с низким содержанием воды. Поэтому глубина проникновения электромагнитных волн в ткани с низким содержанием воды в 10 раз больше, чем в ткани с ее высоким содержанием.

Тепловой и атермический эффект лежат в основе механизмов биологического действия электромагнитных волн. Тепловое действие ЭМП характеризуется избирательным нагревом отдельных органов и тканей, повышением общей температуры тела. Интенсивное облучение ЭМП может вызывать деструктивные изменения в тканях и органах, однако острые формы поражения встречаются крайне редко и их возникновение чаще всего связано с аварийными ситуациями при нарушении техники безопасности.

Хронические формы радиоволновых поражений, их симптомы и течение не имеют строго специфических проявлений. Тем не менее, для них характерно развитие астенических состояний и вегетативных расстройств, главным образом со

стороны сердечно-сосудистой системы. Наряду с общей астенизацией, сопровождающейся слабостью, повышенной утомляемостью, беспокойным сном, у больных появляются головная боль, головокружение, психоэмоциональная лабильность, боли в области сердца, повышенная потливость, снижение аппетита. Развиваются признаки акроцианоза, регионарный гипергидроз, похолодание кистей и стоп, тремор пальцев рук, лабильность пульса и артериального давления с наклонностью к брадикардии и гипотонии; дисфункция в системе гипофиз - кора надпочечников приводит к изменениям секреции гормонов щитовидной и половых желез.

Одним из немногих специфических поражений, вызываемых воздействием электромагнитных излучений радиочастотного диапазона, является развитие катаракты. Помимо катаракты, при воздействии электромагнитных волн высоких частот, могут развиваться кератиты и повреждения стромы роговицы.

Инфракрасное (тепловое) излучение, световое излучение при высоких энергиях, а также ультрафиолетовое излучение большого уровня, при остром воздействии, могут приводить к расширению капилляров, ожогам кожи и органов зрения. Хроническое облучение сопровождается изменением пигментации кожи, развитием хронического конъюнктивита и помутнением хрусталика глаза. Ультрафиолетовое излучение небольших уровней полезно и необходимо для человека, так как способствует усилению обменных процессов в организме и синтезу биологически активной формы витамина D.

Эффект воздействия лазерного излучение на человека зависит от интенсивности излучения, длины волны, характера излучения и времени воздействия. При этом выделяют локальное и общее повреждение тех или иных тканей организма человека. Органом-мишенью при этом служит глаз, который легко повреждается, нарушается прозрачность роговицы и хрусталика, возможно повреждение сетчатки глаза. Лазерное изучение, особенно инфракрасного диапазона, способно проникать через ткани на значительную глубину, поражая внутренние органы. Длительное воздействие лазерного излучения даже небольшой интенсивности может привести к различным функциональным нарушениям нервной, сердечно-сосудистой систем, желез внутренней секреции, артериального давления, повышению утомляемости, снижению работоспособности.

Гигиеническое нормирование электромагнитных полей. Согласно нормативным документам: СанПиН «Санитарно-эпидемиологические требования к эксплуатации радиоэлектронных средств с условиями работы с источниками электромагнитного излучения» № 225 от 10.04.2007 г. МЗ РК; СанПиН «Санитарные правила и нормы защиты населения от воздействия электромагнитных полей, создаваемых радиотехническими объектами» № 3.01.002-96 МЗ РК; МУ

«Методические указания по осуществлению государственного санитарного надзора за объектами с источниками электромагнитных полей (ЭМП) неионизирующей части спектра» № 1.02.018/у-94 МЗ РК; МУ «Методические рекомендации по проведению лабораторного контроля за источниками электромагнитных полей неионизирующей части спектра (ЭМП) при осуществлении государственного санитарного надзора» № 1.02.019/р-94 МЗ РК регламентируется интенсивность электромагнитных полей радиочастот на рабочих местах персонала,
осуществляющего работы с источниками ЭМП и требования к проведению контроля, а также регламентируется облучение электрическим полем, как по величине напряженности, так и продолжительности действия.

Частотный диапазон радиочастот электромагнитных полей (60 кГц - 300 МГц) оценивается напряженностью электрической и магнитной составляющих поля; в диапазоне частот 300 МГц - 300 ГГц - поверхностной плотностью потока энергии излучения и создаваемой им энергетической нагрузкой (ЭН). Суммарный поток энергии, проходящий через единицу облучаемой поверхности за время действия (Т), и выражающийся произведением ППЭ Т представляет собой энергетическую нагрузку.


На рабочих местах персонала напряженность ЭМП в диапазоне частот 60 кГц - 300 МГц в течение рабочего дня не должна превышать установленных предельно допустимых уровней (ПДУ):

В случаях, когда время воздействия ЭМП на персонал не превышает 50% продолжительности рабочего времени, допускаются уровни выше указанных, но не более чем в 2 раза.

Нормирование и гигиеническая оценка постоянных магнитных полей (ПМП) в производственных помещениях и на рабочих местах (Таблица №37) осуществляется дифференцировано, в зависимости от времени воздействия на работника в течение рабочей смены и учетом условий общего или локального облучения.

Таблица № 37. ПДУ воздействия ПМП на работающих.


Достаточно широко используются также гигиенические нормативы ПМП (Таблица № 38), разработанные Международным комитетом по неионизирующим излучениям, которое функционирует при Международной ассоциации радиационной защиты.

Что такое ЭМП, его виды и классификация

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - l (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

Границы диапазона

Наименование волнового диапазона

Границы диапазона

Крайние низкие, КНЧ

Декамегаметровые

Сверхнизкие, СНЧ

30 – 300 Гц

Мегаметровые

Инфранизкие, ИНЧ

Гектокилометровые

1000 - 100 км

Очень низкие, ОНЧ

Мириаметровые

Низкие частоты, НЧ

30 - 300 кГц

Километровые

Средние, СЧ

Гектометровые

Высокие частоты, ВЧ

Декаметровые

Очень высокие, ОВЧ

30 - 300 МГц

Метровые

Ультравысокие,УВЧ

Дециметровые

Сверхвысокие, СВЧ

Сантиметровые

Крайне высокие, КВЧ

30 - 300 ГГц

Миллиметровые

Гипервысокие, ГВЧ

300 – 3000 ГГц

Децимиллиметровые

2. Основные источники эмп

Среди основных источников ЭМИ можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда,…)

    Линии электропередач (городского освещения, высоковольтные,…)

    Электропроводка (внутри зданий, телекоммуникации,…)

    Бытовые электроприборы

    Теле- и радиостанции (транслирующие антенны)

    Спутниковая и сотовая связь (транслирующие антенны)

  • Персональные компьютеры

2.1 Электротранспорт

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.

2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.

Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84

Напряжение ЛЭП

Размер санитарно-защитной (охранной) зоны

Границы санитарно-защитных зон для ЛЭП в г. Москве

Напряжение ЛЭП

Размер санитарно-защитной зоны

К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно:

330 кВ - 2 провода, 500 кВ - 3 провода, 750 кВ - 4 провода. Ниже 330 кВ по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.

Допустимые уровни воздействия электрического поля ЛЭП

ПДУ, кВ/м

Условия облучения

внутри жилых зданий

на территории зоны жилой застройки

в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;

на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 – IV категорий;

в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);

в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.

В пределах санитарно-защитной зоны ВЛ запрещается:

    размещать жилые и общественные здания и сооружения;

    устраивать площадки для стоянки и остановки всех видов транспорта;

    размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;

    производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.

В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.

Все источники ЭМП в зависимости от происхождения подразделя­ются на естественные и антропогенные .

В спектре естественных электромагнитных полей условно можно выделить три составляющие:

· геомагнитное поле (ГМП) Земли;

· электростатическое поле Земли;

· переменные ЭМП в диапазоне частот от 10 до 10 Гц.

Естественное электрическое поле Земли создается избыточным от­рицательным зарядом на поверхности, его напряженность на открытой местности обычно находится в диапазоне от 100 до 500 В/м. Грозо­вые облака могут увеличивать напряженность этого поля до десятков-сотен кВ/м.

Геомагнитное поле Земли состоит из основного постоянного поля (его вклад 99%) и переменного поля (1%). Существование постоянно­го магнитного поля объясняется процессами, протекающими в жидком металлическом ядре Земли. В средних широтах его напряженность со­ставляет примерно 40 А/м, у полюсов 55,7 А/м.

Переменное геомагнитное поле порождается токами в магнитосфе­ре и ионосфере. Например, сильные возмущения магнитосферы могут быть вызваны магнитными бурями, многократно увеличивающими ам­плитуду переменной составляющей геомагнитного поля. Магнитные бури являются результатом проникновения в атмосферу летящих от Солнца со скоростью 1000... 3000 км/с заряженных частиц, так называе­мого солнечного ветра, интенсивность которого обусловлена солнечной активностью (солнечными вспышками и др.).

Свой вклад в формирование естественного электромагнитного фо­на Земли вносит грозовая активность (0,1... 15 кГц). Электромагнитные колебания на частотах 4... 30 Гц существуют практически всегда. Мож­но предположить, что они могут служить синхронизаторами некоторых биологических процессов, поскольку являются резонансными частота­ми для ряда из них.

В спектр солнечного и галактического излучения, достигающего Земли, входят ЭМИ всего радиочастотного диапазона, инфракрасное и ультрафиолетовое излучения, видимый свет, ионизирующие излучения.

Человеческий организм излучает ЭМП с частотой выше 300 ГГц с плотностью потока энергии 0,003 Вт/м². Если общая площадь поверх­ности среднего человеческого тела 1,8 м², то общая излучаемая энергия приблизительно 0,0054 Вт.

В настоящее время впервые в мире российскими учеными выпол­нена разработка гигиенических рекомендаций, регламентирующих воз­действие на человека ослабленных геомагнитных полей. Поводом для подобных исследований послужили жалобы на ухудшение самочув­ствия и состояния здоровья лиц, работающих в специализированных экранированных сооружениях, в силу своих конструктивных особенно­стей препятствующих проникновению внутрь них ЭМИ естественного происхождения.



Ослабленные естественные геомагнитные поля (ГМП) могут создаваться также в подзем­ных сооружениях метрополитена (уровни естественных ГМП снижены в 2...5 раз), в жилых зданиях, выполненных из железобетонных кон­струкций (в 1,5 раза), в салонах легковых автомобилей (в 1,5... 3 раза), а также в самолетах, банковских хранилищах и т.д.

При нахождении человека в условиях дефицита естественных ЭМП возникает ряд функциональных изменений в ведущих системах орга­низма: возникает дисбаланс основных нервных процессов в виде пре­обладания торможения, дистонии мозговых сосудов, развиваются изме­нения со стороны сердечно-сосудистой и иммунной систем и др.

Антропогенные источники ЭМП в соответствии с международной классификацией делятся на две группы:

· источники, генерирующие крайне низкие и сверхнизкие частоты от 0 до 3 кГц;

· источники, генерирующие излучение в радиочастотном диапазоне от 3 кГц до 300 ГГц, включая СВЧ-излучение.

К первой группе относятся, в первую очередь, все системы про­изводства, передачи и распределения электроэнергии (линии электро­передач - трансформаторные подстанции, электростанции, системы электропроводки, различные кабельные системы); офисная электро- и электронная техника, транспорт на электроприводе: железнодорожный транспорт и его инфраструктура, городской - метро, троллейбусный, трамвайный.

Протяженность ЛЭП в нашей стране составляет более 4,5 млн км. Источником излучения энергии в окружающее пространство являются провода ЛЭП. Несмотря на то, что электромагнитная энергия поля про­мышленной частоты (50 Гц) в значительной мере поглощается почвой, напряженность поля под проводами и вблизи них может быть значитель­ной и зависит от класса напряжения ЛЭП, нагрузки, высоты подвески, расстояния между проводами, растительного покрова, рельефа под ли­нией.

Источниками ЭМП в диапазоне 3 кГц... 300 ГГц являются переда­ющие радиоцентры, радиостанции НЧ, СЧ, КВЧ диапазонов, радио­станции FM (87,5... 10 МГц), мобильные телефоны, радиолокацион­ные станции (метеорологические, аэропортов), установки СВЧ-нагрева, ВДТ и персональные компьютеры и др.

Воздействию высоких уровней ЭМИ, создаваемых, например, пе­редающими радиоцентрами (ПРЦ) во многих случаях подвергаются не только служащие ПРЦ, но и люди, находящиеся в прилегающих домах. ПРЦ включают в себя одно или несколько технических зданий, в кото­рых находятся радиопередатчики и антенные поля, на которых распола­гаются до нескольких десятков антенно-фидерных систем. Размещение ПРЦ может быть различным, например, в Москве характерно размеще­ние в непосредственной близости или среди жилой застройки (напри­мер, Октябрьский ПРЦ).

Радиолокационные станции имеют высокую мощность и оснаще­ны, как правило, остронаправленными антеннами кругового обзора, что приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с вы­сокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты - Иркутск, Сочи, Ростов-на-Дону и др.

В настоящее время в России несколько миллионов человек пользу­ются сотовой связью. Сотовая связь состоит из сети базовых станций и ручных персональных радиотелефонов. Базовые станции расположены на расстоянии от 1 до 15 км друг от друга, образуя между собой так на­зываемые «соты» посредством радиорелейной связи. Они обеспечива­ют связь с персональными радиотелефонами на частотах 450, 800, 900 и 1800 МГц. Мощность передатчиков находится в диапазоне от 2,5 до 320 Вт (как правило, 40 Вт).

Антенны базовых станций располагаются на высоте 15-50 м от по­верхности Земли, в основном, на крышах зданий. При их расположе­нии на крышах общественных, административных или жилых зданий осуществляется контроль электромагнитной обстановки, однако они не рассматриваются как потенциальные источники опасности, поскольку излучение боковых лепестков базовых антенн имеет небольшое значе­ние.

Ручные радиотелефоны сотовой связи имеют мощность 0,2... 7 Вт. Выходная мощность коррелируется с частотой: чем выше частота, тем меньше выходная мощность.

Для уменьшения последствий рекомендуется не прижимать телефон к уху, или прикладывать его во время разговора то к одному, то к друго­му уху и непрерывно говорить не более 2... 3 минут. Некоторые ученые предлагают изменить конструкцию радиотелефона так, чтобы антенна была направлена вниз относительно уха, а еще лучше в сторону от го­ворящего.

Источниками ЭМП в широком диапазоне частот являются ВДТ и персональные компьютеры . На рабочих местах пользователей компью­теров с мониторами на базе электронно-лучевых трубок фиксируются достаточно высокие уровни ЭМП, что говорит об опасности их биоло­гического действия, а распределение полей сложно и неодинаково на различных рабочих местах. Спектральная характеристика поля на ра­бочем месте пользователя компьютера и типичная карта электромагнит­ной обстановки приведены на рис. 7.2 - 7.4.

В промышленности высокочастотные ЭМИ используются для ин­дукционного и диэлектрического нагрева материалов (закалка, плавка, напыление металлов, нагрев пластмасс, склейка пластиков, термообра­ботка пищевых продуктов и др.).

Например, вблизи промышленных генераторов для высокочастот­ной закалки металлов, сушки древесины и т.п. напряженность электри­ческого поля на рабочих местах может достигать нескольких сот вплоть до тысячи В/м, а напряженность магнитного поля - десятков А/м.

Рис. 7.2. Спектральная характеристика переменно­го электрического поля на рабочем месте пользова­теля. Монитор СМ-102, Тайвань

Рис. 7.3. Пример распределения переменного электрического поля на рабочем месте пользователя

Рис. 7.4. Силовые линии магнитного поля вокруг дисплея

Источниками постоянных магнитных полей на рабочих местах являются: электромагниты и соленоиды постоянного тока, импульс­ные установки полупериодного и конденсаторного типа, магнитопроводы в электрических машинах и аппаратах, литые и металлокерамические магниты, используемые в радиотехнике. Постоянные магниты и электромагниты широко используются в приборостроении, в магнит­ных шайбах подъемных кранов и других фиксирующих устройствах, в устройствах для магнитной обработки воды, установках ядерного магнитного резонанса и др. Мощными источниками постоянного маг­нитного поля являются магнитогидродинамические генераторы, уров­ни магнитных полей которых в местах нахождения обслуживающего персонала достигают 50 мТл. Средние уровни постоянных магнитных полей в рабочей зоне операторов при электролитических процессах составляют 5...10мТл. Высокие уровни (10... 100мТл) создаются в салонах транспортных средств на магнитной подушке.

Электростатические поля возникают при работе с легко электризую­щимися материалами и изделиями, при эксплуатации высоковольтных установок постоянного тока. Статические электрические поля широко используются в промышленности для электрогазоочистки, электроста­тической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и др.

*11111*В технологических процессах широко используют искусственные источники ЭМП, работающие в следующих частотных диапазонах: f = 3-300 Гц – токи промышленной частоты; f = 60 кГц-300 ГГц – токи радиочастот. На металлургических заводах применяют установки для индукционной обработки металлов, которые позволяют: плавить, закаливать, отжигать, сваривать металл. Кроме того, источниками ЭМП являются средства автоматики, трансформаторы, конденсаторы, электронно-лучевые трубки.

Эффективным средством защиты от ЭМП является экранирование . Выбор конструкции экрана зависит от диапазона волн, характера выполняемых работ, источника излучения.

Защита человека от вредного воздействия электромагнитного поля промышленной частоты

В настоящее время в быту и на производстве широко используются приборы и электроустановки различного назначения, распространяющие электромагнитные поля. Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятные воздействия на человека, большую опасность представляет электромагнитное поле (ЭМП) промышленной частоты 50 Гц.

Источники электромагнитных полей

Органы чувств человека не воспринимают электромагнитные поля. Человек не может контролировать уровень излучения и оценить грозящую опасность, своего рода электромагнитного смога. Электромагнитное излучение распространяется во всех направлениях и оказывает, прежде всего, воздействие на человека, работающего с прибором-излучателем, и на окружающую среду (в том числе и на другие живые организмы). Известно, что магнитное поле возникает вокруг любого предмета, работающего от электрического тока. Элементарным источником ЭМП является обычный проводник, по которому проходит переменный ток любой частоты, т.е. практически любой электроприбор, применяемый человеком в быту, является источником ЭМП.

Электрические сети, опутывающие стены наших квартир, хорошо можно увидеть в период их монтажа, еще до оштукатуривания стен. Это, прежде всего, разводка сетей ко всем розеткам и выключателям, а также кабели и различного вида удлинители электробытовых приборов. Добавьте сюда еще и кабели, питающие жилые дома от городских трансформаторных подстанций, разводку электросетей по этажам дома к электросчетчикам и средствам автоматической защиты каждой квартире, систему электропитания лифтов и освещения коридоров, подъездов домов и т.д.

В повседневной деятельности в условиях территории, занятой жилой и общественной застройкой, улицами, площадями общего пользования, человек также подвергается действию ЭМП промышленной частоты от разных источников.

Через жилые районы городов проложены воздушные линии электропередачи (ЛЭП). Воздушные ЛЭП глубокого ввода напряжением 10, 35 и 110 кВ, проходящие через жилую застройку, затрагивают небольшую часть жителей городов и населенных пунктов, но вызывают обоснованные жалобы с их стороны даже при отсутствии превышения предельно допустимых уровней (ПДУ) электромагнитного поля. Среди других источников электромагнитных полей промышленной частоты достаточно широко распространены открытые распределительные устройства трансформаторных подстанций, городской электротранспорт (контактные сети троллейбусов и трамваев) и железнодорожный электротранспорт, как правило, или приближенный к жилым корпусам, или перерезающий населенные пункты (села, города и пр.). Конечно, стены домов, особенно из железобетонных панелей, являются экранами и, тем самым, снижают уровень ЭМП, однако не учитывать воздействие внешних ЭМП на человека нельзя. В табл.1 приведены средние уровни электромагнитного поля на открытой территории и внутри жилых помещений , который практически представляет собой среднестатистический промышленный район.

Помимо внутренних и внешних электросетей не следует забывать еще и внутренние и локальные источники ЭМП, максимально приближенные к человеку. К ним можно отнести физиотерапевтическую аппаратуру больниц, бытовые электропотребители, питаемые от электросетей с промышленной частотой 50 Гц.

Замеры напряженности магнитных полей, создаваемых бытовыми электроприборами, показали, что их кратковременное воздействие оказывается даже более сильным, чем долговременное пребывание человека рядом с линиями электропередачи. Уровень напряженности магнитного поля на различных расстояниях от бытовых приборов до человека, мГс, приведен в табл.2.

Воздействие ЭМП на организм человека

Степень биологического влияния ЭМП на организм человека зависит от частоты колебаний, напряженности поля и его интенсивности.

Человеческое тело представляет собой некий сосуд, наполненный жидкостью, проводимость которой объясняется наличием в ней гемоглобина, содержащей в крови человека комплексные соединения железа с белком. Таким образом, имеются благоприятные условия, когда внешние переменное магнитное поле может наводить в железистом белке тела человека ток и создать возможность взаимодействия красных кровяных телец с этим полем.

Известно, что при мощности 10 мВт/см2 облучаемой поверхности ткань человека может прогреться на несколько десятых долей градуса. А от частоты излучения зависит интенсивность поглощения электромагнитной энергии в теле человека.

Действие ЭМП особенно большой напряженности (распределительного устройства подстанций и линий электропередачи напряжения 330 - 500 - 750 - 1500 кВ) проявляется по-разному. Находясь в ЭМП, тело человека заряжается при любом соприкосновении с металлической конструкцией подстанции или ЛЭП, что приводит к разрядному импульсу. Установлено , что время такого импульса составляет микросекунды. Эффект этого разряда напоминает ощущение неприятного неожиданного укола. Последствием этого может быть ослабление хватательной способности пальцев и в целом кистей рук, потеря, возможно, на какие-то микросекунды, психологической ориентации и пр., что может привести к травмам: падению верхолаза с высоты опоры, ушибу рабочих, стоящих внизу, инструментом, выпавшим из рук верхолаза и т.д.

В целом интенсивное ЭМП промышленной частоты вызывают у рабочих:

Нарушение функционального состояния центральной нервной, сердечнососудистой и эндокринной систем;

Головокружение, нарушение сна, повышение сонливости, вялости, утомляемости, снижение точности движений;

Изменение кровяного давления и пульса, возникновение болей в сердце, сопровождаемых головной болью и аритмией и т.д.

нарушение половой функции;

Ухудшение развития эмбриона;

Все эти изменения в организме человека фиксируются при медицинских обследованиях (анализ крови, электрокардиографии и т.п.)

За последние годы появилась информация о том, что источником злокачественных новообразований может быть ЭМП промышленной частоты.

Защита человека от ЭМП

Для защиты людей от вредного влияния ЭМП применяются нормативы и стандарты, которые представляют собой некий компромисс между преимуществами применения новых технологий и новой техники и возможным риском, причиненным этим применением.

Допустимые уровни неионизирующих излучений различных видов и диапазонов частот и т.д.

В основе установления предельно допустимых уровней (ПДУ) лежит принцип пороговости вредного воздействия ЭМП на человека. В качестве ПДУ ЭМП предусмотрены такие уровни, которые при систематическом облучении в рабочем режиме для данного конкретного источника ЭМП не вызывают у людей (без ограничения пола и возраста) заболеваний и отклонений в состоянии здоровья. В табл.3 приведены допустимые уровни напряженности поля от ЛЭП промышленной частоты.

Однако важным является не только величина напряженности ЭМП, но и продолжительность нахождения человека в зоне действия этого поля. На основе исследований, разработаны следующие нормативы для электрических полей промышленной частоты, предусматривающие ограничение времени пребывания человека в зоне источника ЭМП (см. табл.4)

При напряженности ЭМП 5 кВ/м производство работ не ограничивается как по характеру, так и по длительности выполнения. При напряженности более 25 кВ/м, а также, если требуется большая продолжительность пребывания человека в ЭМП, чем приведено выше, работы должны выполняться с применением средств защиты, например специальной одежды, ткань которой обладает свойствами экрана. В качестве тканей используются ткани с проводящей краской, ткани, содержащие волокна из гибкой медной проволоки, ткани с нитями из проводящего полимера и т.д.

В качестве предупредительных мер предусматривается осуществление постоянного контроля электромагнитной обстановки путем проведения электромагнитного мониторинга, а также прогнозирования развития в целом для предприятия или организации электромагнитной обстановки .

Размеры санитарно-защитных зон ЛЭП в зависимости от их класса напряжения (f = 50 Гц) приведены в табл.5.

Под санитарно-защитной зоной понимается так называемая охранная зона, имеющая условное направление вдоль воздушной линии электропередачи и отсчитываемая от проекции крайних проводов ЛЭП по земле.

Следует заметить, что регламентация размеров санитарно-защитной зоны ЛЭП осуществляется при классе напряжения ЛЭП 330 кВ и выше по электрической составляющей. Однако по магнитной составляющей электромагнитного поля ЛЭП, более опасной, чем электрическая составляющая, размеры санитарно-защитной зоны предположительно могут составлять 200...400 м. Исследования по установлению окончательных размеров охранной зоны по магнитной составляющей следует продолжить.

Размещать жилые здания;

Предусматривать стоянки и остановки всех видов транспорта;

Устраивать любые спортивные и игровые площадки;

Собирать грибы, любые плоды, ягоды и особенно лекарственные растения.

Для контроля за электромагнитной ситуацией в жилых домах или в офисных помещениях, где находится человек, используются приборы, состоящие из регистратора интенсивности ЭМП (переменного и электростатического) типа РИЭП - 50/20 и регистратора интенсивности магнитного поля РИМП 50/2,4, дающие световой и звуковой сигналы при превышении ПДУ для данного источника.

Предусматривается также защита людей от воздействия ЭМП так называемым методом расстояний от источников ЭМП, т.е. санитарно-защитной зоны, размеры которой зависят от напряженности источника (табл.4).

Что касается методов защиты человека в жилых помещениях, то на этот счет можно дать некоторые практические рекомендации.

Поскольку в собственной квартире полностью избавиться от бытовых электроприборов практически невозможно, желательно соблюдать следующие правила:

Не устанавливать над кроватью средства освещения (бра, светильники с плафонами), светопоток от которых обращен вниз, на Вас, - свет должен быть направлен только вверх;

Не устанавливать в спальне телевизор, компьютер, «базу» радиотелефона, который лучше заменить обычным;

Не ставить у изголовья электронные часы (будильник);

Отключать от сети на ночь телевизор, музыкальный центр, проигрыватель и прочие источники электромагнитного излучения, которые могут находиться в дежурном режиме и т.д.

Отказаться по возможности от систематического использования электрических бритв;

Применять утюги с бифилярной обмоткой нагревательных спиралей (такая обмотка не обладает индуктивностью).

Выводы

На основе отечественных и зарубежных исследований установлено наличие связей некоторых заболеваний населения с воздействием электромагнитных излучений, в частности ЭМП.

Установление указанных взаимосвязей является предметом дальнейших исследований электромагнитной нагрузки с учетом статистических показателей состояния здоровья отдельных групп населения, в том числе с учетом профессии, возраста, пола и т.д.

Литература

Дунаев В.Н. Формирование электромагнитной нагрузки в условиях городской среды//Санитария и гигиена. - 2002. - №5. -С.31-34.

Емельянов В. Мероприятия по защите населения и территорий в условиях электромагнитного загрязнения окружающей среды//Основы безопасности жизнедеятельности. -2000. - №1. - С.58-61.

В современной жизни человека практически любое электрическое устройство имеет своё излучение. Источником (ЭМП) служит высоковольтная линия, телевизор и даже личный смартфон. Всё человечество живёт в одном большом месте, это Земля, которая изначально пронизана природными волнами различного спектра.

Общее пространство

Ученые установили уровень природного волнового фона, в котором организм привык существовать. У земного шара имеется два отличающихся полюса, и каждый день мы на себе испытываем влияние спектра излучения. Изменяясь под действием внешних факторов, электромагнитное поле человека нарушается, что приводит к проблемам со здоровьем.

Исследователи давно заметили, что самые крупные войны в мире происходили после вспышек на Солнце, когда нарушался естественный магнитный фон Земли. В последнее время этот показатель приводится в прогнозах погоды по телевидению. В природе существуют особые места с горными породами. Здесь человек не может находиться по следующей причине: электромагнитное излучение и электромагнитное поле собственное не совпадают.

Влияние на здоровье

Электромагнитное излучение и электромагнитное поле влияют на здоровье человека, поэтому были установлены допустимые показатели. Отмечено негативное действие волн на нервную систему, работу головного мозга и сердца. У животных и насекомых, обитающих в районах повышенного ЭМП, наблюдают патологии в строении тела.

Согласно исследованиям, влияние волн негативно сказывается на самочувствии человека. Провоцируется головная боль и усталость, нарушается работа внутренних органов. Более старшее поколение может даже потерять сознание в опасной зоне: возле высоковольтных линий или работающего электромагнита.

Источником электромагнитного поля служит:

  • Сотовая связь, смартфоны, излучатели Wi-Fi, бытовая техника. Сильное ЭМП появляется при работе микроволновой плиты.
  • Электротранспорт, проводящие магистрали, промышленные объекты.
  • Радары, рации, излучающие установки.
  • Сканеры медицинские, в аэропортах.
  • Телерадиосвязь, УВЧ-установки.

Нормы

Рядом с мощными излучателями по нормативным актам должна быть организована санитарная зона. Она рассчитывается согласно техническим данным объекта специальной комиссией. Стандартные значения указаны в документации. Так, при формировании показателей учитывают напряжение сети и силу тока, протекающую по проводам.

Таким источником электромагнитного поля является высоковольтная линия электропередач, питающая целый город. Санитарная зона учитывает, что нагрузка на подходящие провода меняется со временем суток и года. Область этого участка опасна для людей, животных и растений. Максимально допустимая граница, не опасная для организма, - это плотность потока равная 0,3 мкТл. Выше этой величины у здорового человека могут проявиться онкологические и сердечные заболевания.

Домашние приборы

Поэтому в инструкции микроволновой печи указано: не рекомендуется находиться непосредственно перед лицевой панелью во время разогревания пищи. Длительное пребывание беременных женщин в зоне повышенного электромагнитного поля может приводить к выкидышам. Учёными доказан тот факт, что сотовый телефон влияет на самочувствие человека. Лучше его не оставлять на ночь рядом с головой и не носить в карманах около сердца.

На улице

Источником электромагнитного поля служит ЛЭП, электротранспорт: трамваи, троллейбусы. Поэтому при выборе загородного участка опытные люди стараются держаться подальше от линий с питающими станций вещания, ретрансляторов сотовой связи, электрических подстанций. При подозрении о превышении допустимых норм излучение можно проверить прибором. Виновник будет обязан устранить негативный фактор.

Ещё один мощный излучатель - это железная дорога. Возле неё обязательно будут завышенные показатели. Однако от них никуда не деться, это плата за удобство передвижения горожан.

Методы борьбы

Одним из основных способов исключения влияния ЭМП на человека является пространственное отдаление излучающих объектов. Высоковольтные линии прокладываются высоко над природными ландшафтами, чтобы не навредить растениям и животным. Рядом с такими сооружениями запрещено возводить жилые дома, выращивать сельскохозяйственные культуры, пасти домашнюю скотину.

В городе распространено экранирование излучающих объектов. Энергия электромагнитного поля не проникает через заземленные металлические оболочки. Если человека надолго изолировать от поля Земли, у него появится сильная слабость или, наоборот, агрессия. Аналогичное самочувствие проявляется у моряков или подводников после длительного плавания.

Волновое лечение

При правильном излучении может наблюдаться обратный эффект. Его используют в медицине для восстановления функций организма. Источником электромагнитного поля служит который пациент прикладывает к больному месту. Длительная терапия снимает хронические недомогания суставов, сосудов, сердца.

ЭМП используется для снятия боли, улучшения кровообращения, благодаря ему быстро проходит усталость. Лечебный эффект образуется из-за ионизации металлических составляющих крови. Человек чувствует согревающее действие излучения. Периодическое применение медицинских аппаратов сводит на нет рецидивы хронических заболеваний.

Электромагнитное поле положительно влияет на иммунитет, убирает отеки. Наблюдается быстрая регенерация клеток после травм. Однако магнитотерапия может оказывать негативное влияние при наличии кардиостимуляторов или тогда, когда человек имеет заболевания крови. Назначать такое лечение должен врач по результатам обследования.

Что ещё запрещено размещать в негативных зонах?

Санитарная зона возле сильных источников электромагнитного поля устанавливается надзорными органами. В этом месте все объекты размещаются только после согласования с ними. Запрет касается помещений и площадок, отведенных под хранение горюче-смазочных материалов. Нельзя строить нефтебазы, заправки, стоянки под любой вид транспорта, кроме электрического.

Также в зоне не должны находиться люди. Запрещается размещать остановки, рынки, устраивать собрания. При необходимости организации подобных мест используется экранирование источника. На крышах, где имеются передающие станции, часто можно увидеть металлическую сетку вокруг антенны. Так добиваются сужения санитарной зоны.

Подобные меры принимаются для защиты жилых и производственных построек от обычных и шаровых молний. На крыше устанавливается металлическая антенна, заземленная глубоко в грунт. Вокруг здания образуется скопление положительного потенциала, а электроны уходят по искусственной цепи. При размещении нового прибора в своём доме лучше позаботиться заранее о месте его установки подальше от спального помещения.